281 |
DEVELOPMENT AND REMOVAL OF ANTIBIOTIC RESISTANCE GENESMian Wang (6616589) 15 May 2019 (has links)
<div>Antibiotics have been widely used to treat bacterial diseases since the 1940s. However, the benefits offered by antibiotics have gradually faded due to the increased occurrence and frequency of antibiotic resistance. The widespread use of antibiotics has driven selection for resistance in bacteria and is becoming a global problem for human health and the environment. Antibiotic resistance is exacerbated by the ability of bacteria to share their antibiotic resistance genes (ARGs) with other bacteria via horizontal gene transfer (HGT). Many existing studies on HGT of ARGs focused on antibiotic concentrations at or above the minimal inhibitory concentration (MIC), which is the lowest concentration of an antibiotic that prevents visible growth of a bacteria culture. However, knowledge on the development of antibiotic resistance under different stressors at sub-MIC levels is still limited. In addition, carbon nanotubes (CNTs) have been widely studied in environmental, agricultural and biomedical areas due to their unique physical and chemical characteristics, but limited studies have been done to evaluate the effects of CNTs on the spread of ARGs. Electrochemical filtration has been shown to be a cost-effective technique to remove recalcitrant compounds and reduce antibiotic resistance, but limited studies have been done to evaluate the effectiveness of removal of ARGs with electrochemical filtration. Therefore, there is a critical need to evaluate the effects of trace levels of antibiotics and CNTs on the development of antibiotic resistance and electrochemical removal of ARGs. </div><div><br></div><div>The specific research objectives of this study were to evaluate: (1) selective pressure of sub-inhibitory concentrations of antibiotics on the development of antibiotic resistance and HGT, (2) development of antibiotic resistance and HGT under exposure to CNTs and antibiotics, and (3) effectiveness of using an electrochemical MWCNT filter to remove ARGs. </div><div><br></div><div>To evaluate the development of antibiotic resistance exposed to sub-MIC of erythromycin, HGT between environmental donor (<i>E. coli)</i> and pathogenic bacterial recipient (<i>B. cereus</i>) was quantified. The results indicated that extremely low concentration (0.4 ng/L to 4 µg/L) of erythromycin promoted HGT of <i>erm</i>80 gene, which is an erythromycin resistance gene. In addition to traditional culture-based method and quantitative real-time PCR (qPCR), a fluorescence <i>in situ</i> hybridization (FISH) approach was used to detect the occurrence and development of ARGs even the bacteria were in the viable but nonculturable (VBNC) state after treatment of sub-lethal level of erythromycin. Multi-walled carbon nanotubes (MWCNT) was selected as a representative stressor to evaluate the effects on HGT. The results showed that MWCNT enhanced HGT above 1 × MIC, which is the lethal level of erythromycin to recipients, and transfer frequencies of erm80 genes increased up to 101-fold under exposure to 1 × MIC erythromycin and MWCNT as compared to no MWCNT control. However, transfer efficiency of <i>erm</i>80 gene under exposure to sub-MIC of erythromycin was inhibited by MWCNTs. Moreover, transfer of antibiotic resistance plasmids was affected by antibiotics and MWCNTs. Although the concentration of individual stressor was not enough to confer antibiotic selection, effects of both antibiotics above 1 × MIC and MWCNTs could add up and select for antibiotic resistance. The results suggested that CNTs might create additional selective pressure for the spread of ARGs and their effects on HGT should be further investigated. Finally, an electrochemical MWCNT filtration was evaluated to remove genomic DNA and ARGs under the effects of operating conditions, such as pH, phosphate, and NOM. The results showed that the electrochemical MWCNT filtration reactor achieved 79% removal efficiency for genomic DNA and 91% removal efficiency for <i>erm</i>80 genes. The study suggested that electrochemical MWCNT filtration could be a promising technology for the removal of DNA and ARGs.</div><div><br></div><div>Overall, the results improved our understanding of the development of antibiotic resistance and ARGs under various selective pressures. Trace levels of antibiotics promoted the development and spread of ARGs. Conjugative transfer of resistance genes exposed to sub-MIC levels of erythromycin and MWCNTs also contributed to the spread and propagation of ARGs. As antibiotic concentrations detected in natural environment are often in trace levels, the results of this study may improve the understanding of health risks of trace levels of antibiotics and help develop effective mitigation strategies to control the spread of antibiotic resistance. Effective removal of ARGs with electrochemical MWCNT filtration may help the development of cost-effective treatment systems to remove ARGs to protect human health and the environment.</div><div><br></div>
|
282 |
Dynamics and evolution of efflux pump-mediated antibiotic resistanceLangevin, Ariel Marie 19 January 2021 (has links)
Antibiotic resistance is a worldwide health threat, as bacteria continue to evade antibiotic treatment. In order to survive, bacteria utilize a number of resistance mechanisms, including efflux pumps, which efficiently export antibiotics outside of the cell to reduce intracellular damage. While such mechanisms are well known, there remains a significant gap in knowledge regarding how different environmental dynamics, such as the rate of antibiotic introduction or the diversity within a microbial community, play a role in resistance. In this work, we used the AcrAB-TolC efflux pump as a case study to explore how such complex dynamics promote antibiotic resistance and its evolution. First, through a combined effort using experiments and mathematical modeling, we discovered that the rate of antibiotic introduction impacts the fraction of resistant bacteria in a population. We then explored the impact of mixed populations on survival following antibiotic treatment. In mixed microcolonies, we found that resistant cells can harm their susceptible neighbors by exporting antibiotics to increase the local concentrations of these drugs. Next, we aimed to understand how these environmental effects may impact longer-term survival of an antibiotic treatment, focusing on the evolution of resistance over ~72 hours. Through a series of adaptive evolution experiments, we identified that near-MIC treatments were the most likely to promote antibiotic resistance, regardless of whether the strains contained the AcrAB-TolC pump at wild type or overexpressed levels, or whether the strains lacked the pump altogether. In studying antibiotic introduction rates on evolution, we found that slower introduction rates facilitated the evolution of high levels of resistance with a minimal fitness cost. Meanwhile, mixed populations demonstrated limited evolvability after rapid antibiotic introductions. This work provides important insights into the impacts of environmental factors, such as the rate of antibiotic introduction and the homogeneity of populations, on the promotion and evolution of antibiotic resistance. These lessons may help inform future policies on antibiotic use and mitigate the continued pattern of resistance evolution.
|
283 |
Exploration of Low-Cost, Natural Biocidal Strategies to Inactivate New Delhi Metallo-beta-lactamase (NDM)-Positive Escherichia coli PI-7, an Emerging Wastewater-ContaminantAljassim, Nada I. 07 1900 (has links)
Conventional wastewater treatment plants are able to reduce contaminant loads within regulations but do not take into account emerging contaminants. Antibiotic resistance genes and antibiotic resistant bacteria have been shown to survive wastewater treatment and remain detectable in effluents. The safety of treated wastewaters is crucial, otherwise unregulated and unmitigated emerging contaminants pose risks to public health and impede wastewater reuse.
This dissertation aimed to further understanding of emerging microbial threats, and tested two natural and low-cost tools for their mitigation: sunlight, and bacteriophages. A wastewater bacterial isolate, named E. coli PI-7, which is highly antibiotic resistant, carries the novel antibiotic resistance gene New Delhi metallo-beta-lactamase NDM-1 gene, and displays pathogenic traits, was chosen to model responses to the treatments.
Results found that solar irradiation was able to achieve a 5-log reduction in E. coli PI-7 numbers within 12 hours of exposure. However, the results also emphasized the risks from emerging microbial contaminants since E. coli PI-7, when compared with a non-pathogenic strain E. coli DSM1103 that has less antibiotic resistance, showed longer survival under solar irradiation. In certain instances, E. coli PI-7 persisted for over 6 hours before starting to inactivate, exhibited complex stress resistance gene responses, and activated many of its concerning pathogenicity and antibiotic resistance traits.
However, upon solar irradiation, gene expression results obtained from both E. coli strains also showed increased susceptibility to bacteriophages. Hence, bacteriophages were coupled with solar irradiation as an additional mitigation strategy. Results using the coupled treatment found reduced cell-wall and extracellular matrix production in E. coli PI-7. DNA repair and other cellular defense functions like oxidative stress responses were also impeded, rendering E. coli PI-7 more susceptible to both stressors and successfully hastening the onset of its inactivation.
Overall, the dissertation is built upon the need to develop strategies to further mitigate risks associated with emerging microbial contaminants. Solar irradiation and bacteriophages demonstrate potential as natural and low-cost mitigation strategies. Sunlight was able to achieve significant log-reductions in tested E. coli numbers within a day’s exposure. Bacteriophages were able to overwhelm E. coli PI-7’s capacity to resist solar inactivation while not affecting the indigenous microbiota.
|
284 |
Occurrence and characterization of antibiotic-resistant Escherichia coli in wastewater and surface water / 下水と表流水の薬剤耐性大腸菌の存在実態と特徴Ma, Chih-Yu 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22762号 / 工博第4761号 / 新制||工||1745(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 田中 宏明, 教授 米田 稔, 准教授 松田 知成 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
285 |
Sjuksköterskans potentiella roll i antimicrobial stewardship : En litteraturöversikt / The potential role of nurses in antimicrobial stewardshipGravander Nikkinen, Anna, Haglund, Ellen January 2021 (has links)
Background The antimicrobial stewardship is developed to provide a guide on the responsible use of antimicrobial drugs. Thus, slowing down the development of antimicrobial resistance. However, the nurse's role in antimicrobial stewardship is not clarified. Failure toinclude the nurse within the antimicrobial stewardship guidelines may result in poor execution of antimicrobial stewardship.Aim To explore the role of nurses in antimicrobial stewardship and how it can be practically implemented within the medical field.Method This is a literature review where seven qualitative studies, two quantitative studies and a mix-methods study examines the nurse's role in antimicrobial stewardship.Results Two main themes and five sub-themes were created. The two main themes were clinical role and collaboration. The clinical role described the nurse's role as a patient advocate and the nurse's contribution to antimicrobial stewardship through monitoring and evaluation of the patient and treatment, as well as through safe sampling, drug administration and hygiene. The collaboration showed and identified the nurse's role as a communicator and educator. Conclusion Conclusions that can be drawn from the literature review are that the potential roles the nurse may have in antimicrobial stewardship are many and those we have identified are already included in the nurse's daily work.
|
286 |
Carbapenem resistant Enterobacteriaceae: Risk factors for infection in hospitalized patients and environmental dissemination through a waste water treatment plant into surface watersStuever, David M. January 2020 (has links)
No description available.
|
287 |
The Threat of Antibiotic Resistant Bacteria: The Role of EF-P and EpmA in Antibiotic Resistant E. coliWoodford, Jennifer 05 May 2021 (has links)
No description available.
|
288 |
Computational approaches in infectious disease research: Towards improved diagnostic methodsSurujon, Defne January 2020 (has links)
Thesis advisor: Kenneth Williams / Due to overuse and misuse of antibiotics, the global threat of antibiotic resistance is a growing crisis. Three critical issues surrounding antibiotic resistance are the lack of rapid testing, treatment failure, and evolution of resistance. However, with new technology facilitating data collection and powerful statistical learning advances, our understanding of the bacterial stress response to antibiotics is rapidly expanding. With a recent influx of omics data, it has become possible to develop powerful computational methods that make the best use of growing systems-level datasets. In this work, I present several such approaches that address the three challenges around resistance. While this body of work was motivated by the antibiotic resistance crisis, the approaches presented here favor generalization, that is, applicability beyond just one context. First, I present ShinyOmics, a web-based application that allow visualization, sharing, exploration and comparison of systems-level data. An overview of transcriptomics data in the bacterial pathogen Streptococcus pneumoniae led to the hypothesis that stress-susceptible strains have more chaotic gene expression patterns than stress-resistant ones. This hypothesis was supported by data from multiple strains, species, antibiotics and non-antibiotic stress factors, leading to the development of a transcriptomic entropy based, general predictor for bacterial fitness. I show the potential utility of this predictor in predicting antibiotic susceptibility phenotype, and drug minimum inhibitory concentrations, which can be applied to bacterial isolates from patients in the near future. Predictors for antibiotic susceptibility are of great value when there is large phenotypic variability across isolates from the same species. Phenotypic variability is accompanied by genomic diversity harbored within a species. I address the genomic diversity by developing BFClust, a software package that for the first time enables pan-genome analysis with confidence scores. Using pan-genome level information, I then develop predictors of essential genes unique to certain strains and predictors for genes that acquire adaptive mutations under prolonged stress exposure. Genes that are essential offer attractive drug targets, and those that are essential only in certain strains would make great targets for very narrow-spectrum antibiotics, potentially leading the way to personalized therapies in infectious disease. Finally, the prediction of adaptive outcome can lead to predictions of future cross-resistance or collateral sensitivities. Overall, this body of work exemplifies how computational methods can complement the increasingly rapid data generation in the lab, and pave the way to the development of more effective antibiotic stewardship practices. / Thesis (PhD) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.
|
289 |
Characterization of the Broad-spectrum Inhibitory Capability of Alcaligenes faecalis and A. viscolactis against Potential Pathogenic MicroorganismsFuqua, Andrew 01 May 2020 (has links)
The recent rise of multidrug resistant microorganisms has grown from an isolated concern to a massive public health crisis. It has become imperative that scientists look for new ways to combat this issue. Due to the selective pressures of competition, bacteria and other microbes possess a host of defenses and weapons designed to exploit vulnerabilities in other microorganisms. Consequently, the study of these systems and microbial interactions has much to reveal in the search for novel antimicrobial treatments. Previous research from our laboratory has discovered that both Alcaligenes faecalis and Alcaligenes viscolactis, two rarely studied and generally non-virulent bacteria, exert a microbicidal effect on Candida albicans and Staphylococcus aureus, two pathogenic and frequently drug-resistant organisms. In this study, we confirmed that these effects are via a live-cell, contact-dependent mechanism and showed that both Alcaligenes species inhibit S. aureus at the attachment phase of biofilm growth. Additionally, we found that A. faecalis and A. viscolactis target Gram-positive bacteria outside the genus Staphylococcus and certain Gram-negative species as well as Candida glabrata. This study also provides novel evidence of a putative Type VI Secretion System in both Alcaligenes species, which may explain their antimicrobial phenotype. Despite efforts to identify the genetic elements involved via mutagenesis, the mechanism of these interactions remain elusive due to the difficulty of gene transfer in these organisms. We hope these results will increase current knowledge of Alcaligenes’ capabilities and genetic composition as well as establish the groundwork for future efforts to discover its inhibitory system and mechanisms.
|
290 |
Deciphering the Mechanisms of Alcaligenes faecalis’ Inhibition of Staphylococcus aureus and Synergism with AntibioticsHoldren, Cortlyn 01 May 2021 (has links)
Staphylococcus aureus has developed resistance to several antibiotics including vancomycin, which is often used as a “last resort” treatment. There is an ever-increasing need to develop novel antimicrobial treatments to combat S. aureus and other drug resistant bacteria. Microorganisms are most often found in polymicrobial communities where they either exhibit synergistic or antagonistic relationships. Competition between microorganisms can lead to the discovery of new antimicrobial targets as the specific mechanisms of resistance are elucidated. In addition, synergistic treatments are being evaluated for their combined effect and potential to decrease the concentration of drugs needed, and thus the side effects also. Alcaligenes faecalis is a microorganism that our lab has previously shown to inhibit S. aureus and other various bacterial species. In this study, we found that A. faecalis reduces the planktonic growth of S. aureus by 94.5% and biofilm growth by 76.6%. A. faecalis also has a synergistic effect when paired with bacitracin to reduce the planktonic growth by 99.9% and biofilm growth by 99.7%. Transposon mutagenesis was successfully performed on A. faecalis, and loss of function mutations were attained. Two mutants were no longer able to inhibit the growth of Staphylococcus aureus, Candida albicans, or Bacillus megaterium. Further analysis and genomic sequencing of these mutants is needed to determine the gene(s) that were interrupted and the mechanism of A. faecalis’ antimicrobial activity. The findings of this study may aid in the identification of new therapeutic targets for novel S. aureus treatments.
|
Page generated in 0.0455 seconds