Spelling suggestions: "subject:"APOS 1heory"" "subject:"APOS btheory""
11 |
COMPREENSÃO DOS CONCEITOS DE DERIVADA CLÁSSICA E DERIVADA FRACA: ANÁLISE SEGUNDO O MODELO COGNITIVO APOSRachelli, Janice 03 October 2017 (has links)
Submitted by MARCIA ROVADOSCHI (marciar@unifra.br) on 2018-08-20T17:53:01Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_JaniceRachelli.pdf: 4818944 bytes, checksum: 0c02a81d2b4c04364b21e1ddddc2fe58 (MD5) / Made available in DSpace on 2018-08-20T17:53:01Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_JaniceRachelli.pdf: 4818944 bytes, checksum: 0c02a81d2b4c04364b21e1ddddc2fe58 (MD5)
Previous issue date: 2017-10-03 / The present study is on the field of Mathematics Education in higher education and is
focused on the teaching and learning of Calculus concepts, specifically related to the
concepts of classical derivative and weak derivative. The work, developed in the context
of a qualitative research, aims to investigate how some students of the Master degree
course in Teaching Mathematics of a community institution in Rio Grande do Sul
comprehend the concepts of classical derivative and weak derivative. The APOS theory
serves as a theoretical and methodological reference for the elaboration of the genetic
decomposition in which the possible mental constructions used by the students were
described in what the understanding of the concepts of classical derivative and weak
derivative concern. We proposed some activities on the historical constructions of the
classical concept, the derivative in the present times, and the passage from the classical
derivative to the weak derivative. The teaching situations were developed in the
classroom in the second semester of 2016, within the subject of Fundamentals of
Differential and Integral Calculus. The basis for these activities was the ACE teaching
cycle. The results obtained by analyzing the students' records in the proposed activities
and the observations recorded in the field diary indicate that the students were able to
coordinate actions and processes in order to obtain the derivative and verify if a function
is differentiable. They could also coordinate the interpretations of the derivative, such as
slope of the tangent line, instantaneous velocity and rate of variation, besides using
mechanisms of generalization and reversibility in the analysis of the graphs of functions
and their derivatives and encapsulating the processes necessary for a satisfactory
understanding of the concept of the classical derivative. By means of the integral
equation, the integration formula by parts, and the fundamental theorem of Calculus, the
students were able to coordinate the function and intervals, the functions with compact
support by means of internalizing actions and processes for the encapsulation of the
mathematical object and weak derivative. Although there are some errors in these
processes, there is evidence that the concepts of classical derivative and weak derivative
have been understood by the students. These evidences developed mental mechanisms
of reflective abstraction that allowed the construction of the mental structures of action,
process, object and scheme present in the genetic decomposition that allowed them to
understand the concepts. Moreover, the treatment with the historical context of the
derivative and the collaborative work of the students were significant factors to obtain
the results of the research. / O presente estudo se situa no campo da Educação Matemática no ensino superior e se
insere na linha de investigação voltada ao ensino e aprendizagem de conceitos do
Cálculo, especificamente ligados aos conceitos de derivada clássica e derivada fraca. O
trabalho, desenvolvido no contexto de uma pesquisa qualitativa, teve como objetivo
investigar como se dá a compreensão dos conceitos de derivada clássica e derivada
fraca por estudantes de um curso de mestrado em Ensino de Matemática de uma
instituição comunitária do Rio Grande do Sul. Tendo a teoria APOS como referencial
teórico e metodológico, elaborou-se a decomposição genética, em que foram descritas
as possíveis construções mentais utilizadas pelos estudantes para a compreensão dos
conceitos de derivada clássica e derivada fraca. Foram organizadas situações de ensino
compostas por atividades sobre as construções históricas do conceito clássico, a
derivada nos tempos atuais e a passagem da derivada clássica para a derivada fraca. As
situações de ensino foram desenvolvidas em sala de aula, no segundo semestre de 2016,
na disciplina de Fundamentos de Cálculo Diferencial e Integral, tendo como base o ciclo
de ensino ACE. Os resultados obtidos, por meio da análise dos registros dos alunos nas
atividades propostas e das observações anotadas no diário de campo, indicam que os
estudantes foram capazes de coordenar ações e processos para obter a derivada e
verificar se uma função é diferenciável, coordenar as interpretações da derivada como
inclinação da reta tangente, velocidade instantânea e taxa de variação, além de, utilizar
mecanismos de generalização e reversibilidade na análise dos gráficos das funções e
suas derivadas e de encapsular os processos necessários para a compreensão, de forma
satisfatória, do conceito da derivada clássica. Por meio da equação integral, da fórmula
de integração por partes e do teorema fundamental do Cálculo, os alunos coordenaram a
função e os intervalos, funções com suporte compacto, interiorizando ações e processos
para a encapsulação do objeto matemático, derivada fraca. Embora com alguns erros
cometidos nesses processos, há evidências de que houve compreensão dos conceitos de
derivada clássica e derivada fraca pelos estudantes. Estes evidenciaram desenvolver
mecanismos mentais de abstração reflexionante que possibilitaram a construção das
estruturas mentais de ação, processo, objeto e esquema presentes na decomposição
genética que lhes permitiu compreender os conceitos. Além do mais, o trato com o
contexto histórico da derivada e o trabalho colaborativo dos alunos foram fatores
significativos para a obtenção dos resultados da pesquisa.
|
12 |
Esquemas cognitivos e mente matemática inerentes ao objeto matemático autovalor e autovetor: traçando diferenciais na formação do engenheiroNomura, Joelma Iamac 19 March 2014 (has links)
Made available in DSpace on 2016-04-27T16:57:30Z (GMT). No. of bitstreams: 1
Joelma Iamac Nomura.pdf: 7399337 bytes, checksum: 3b1b78708c15a38620c94201d8ab977e (MD5)
Previous issue date: 2014-03-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The objective of this research harnesses to the results obtained in the Master's
Dissertation defended in September 2008 in Postgraduate Studies Program in
Mathematics Education at PUC - SP. In this same essay, issues related to teaching
and learning of linear algebra sought to answer and find new ways of targeting and
perspectives of students in a graduate in Electrical Engineering, asking Why and
How should it be taught the discipline of linear algebra on a course with this profile?
Among the results, we identified that the interdisciplinarity inherent to the topics of
Linear Algebra and specific content of engineering or applied constituted an essential
factor for the recognition of mathematical disciplines as theoretical and conceptual
basis. Interdisciplinarity reflected in specific mathematical objects of linear algebra
and practical situations of engineering materials for the formation of conceptual and
general engineer seeking the theoretical foundation and basic justification for the
technological improvement of its area. Based on a scenario and results envisioned in
the dissertation we propose to investigate the cognitive structures involved in the
construction of mathematical object eigenvalue and eigenvector in the initial and final
student education phases in Engineering courses, showing the cognitive schemes in
their mathematical minds. For this, the following issues are highlighted: ( 1 ) What
conceptions (action - process -object- schema ) are evidenced in students after
studying the mathematical object eigenvalue and eigenvector in the initial and final
phases of their academic training courses in Engineering? and ( 2 ) these same
phases, which concept image and concept definition are highlighted in the study of
eigenvalue and eigenvector mathematical object? Substantiated by the theoretical
contributions of Dubinsky (1991), on the APOS Theory and Vinner (1991), about the
concept image and concept definition, we consider the cognitive processes involved
in the construction of mathematical object, identifying the nature of their cognitive
entities portrayed in mathematical mind. The discussion focuses on mathematical
mind both the mathematical structure that is designed and shared by the community
as the design in which each mental biological framework handles such ideas. To do
so, we consider the relationship between the ideas which constitute the APOS theory,
concepts image and definition and some aspects of Cognitive Neuroscience.
Characterized as multiple case studies, data collection covered the speech of
students in engineering courses in various training contexts, established by the
institutions. The analysis of the specific mathematical concept called genetic
decomposition led to this concept, which was proposed by System Dynamic Discrete
problem, described by the difference equation K K x A.x 1 = + , (K = 0,1,2 , ... ) . Based on
the ideas of Stewart (2008) and Trigueros et al. (2012) it was possible to us to
identify some characteristics of showing the different conceptions of the students.
Moreover, we consider some ideas that characterize the concept image and concept
definition according Vinner (1991) and Domingos (2003). As a result of our
investigation, we identified that the students of the first case study, at different stages
of training, present the design process and the concept image on an instrumental
level mathematical object eigenvalue and eigenvector. Have students in the second
case, particularly, all of the first phase, and two of the second, showed signs of action
and concept image incipient level. As a student of the second phase, have also
highlighted the design process and the concept image on an instrumental level as the
subject of the first case study. Therefore, we find no significant evolution between the
inherent APOS Theory concepts and the concepts image of the object of study. We
show that all students presented their speeches in relations between the Linear
Algebra course and other courses in the program, such as Numerical Calculation,
Electrical Circuits , Computer Graphics and Control Systems, with lesser or greater
degree of depth and knowledge. We realize that students attach importance to
mathematical disciplines in its formations and seek for a new approach to teaching
that address the relationships between them and the disciplines of Engineering / O objetivo desta pesquisa atrela-se aos resultados obtidos na Dissertação de
Mestrado defendida em setembro de 2008 no Programa de Estudos Pós-Graduados
em Educação Matemática da PUC-SP. Nesta mesma dissertação, questões
relacionadas ao ensino e aprendizagem de Álgebra Linear buscaram responder e
encontrar novas formas de direcionamento e perspectivas de ensino em uma
graduação em Engenharia Elétrica, indagando Por que e Como deve ser lecionada a
disciplina de Álgebra Linear em um curso com este perfil? Dentre os resultados
obtidos, identificou-se que a interdisciplinaridade inerente aos tópicos de Álgebra
Linear e conteúdos específicos ou aplicados da Engenharia constituiu-se de fatores
imprescindíveis para ao reconhecimento das disciplinas matemáticas, como base
teórica e conceitual. A interdisciplinaridade refletida em objetos matemáticos
específicos da Álgebra Linear e situações práticas da Engenharia prima pela
formação do engenheiro conceitual e generalista que busca na fundamentação
teórica e básica a justificativa para o aprimoramento tecnológico de sua área. Com
base no cenário e resultados vislumbrados na defesa da dissertação, propusemonos
investigar as estruturas cognitivas envolvidas na construção do objeto
matemático autovalor e autovetor nas fases inicial e final de formação do aluno dos
cursos de Engenharia, evidenciando os esquemas cognitivos e a mente matemática
dos estudantes, sujeitos de nossa investigação. Para tanto, as seguintes questões
são destacadas: (1) Quais concepções (ação-processo-objeto-esquema) são
evidenciadas nos alunos, após o estudo do objeto matemático autovalor e autovetor
nas fases inicial e final de sua formação acadêmica em cursos de Engenharia?; e (2)
Nessas mesmas fases, quais conceitos imagem e definição são evidenciados no
estudo do objeto matemático autovalor e autovetor? Fundamentados pelos aportes
teóricos de Dubinsky (1991), sobre a Teoria APOS, e Vinner (1991) nos conceitos
imagem e definição, foram considerados os processos cognitivos envolvidos na
construção do objeto matemático, identificando a natureza de suas entidades
cognitivas retratadas na mente matemática. A discussão sobre mente matemática
foca-se tanto na estrutura matemática que é concebida e compartilhada pela
comunidade como no delineamento em que cada estrutura biológica mental trata
essas mesmas ideias. Para tanto, considerou-se a relação entre as ideias que
constituem a Teoria APOS, os conceitos imagem e definição e alguns aspectos da
Neurociência Cognitiva. A pesquisa caracterizada como estudos de caso múltiplos,
identificou os dados a partir do discurso dos estudantes dos cursos de Engenharia
em contextos diversos de formação, estabelecidos pelas instituições de ensino. A
análise do conceito matemático específico levou à chamada decomposição genética
desse conceito, que foi proposto pelo problema de Sistema Dinâmico Discreto,
descrito pela equação de diferença K K x A.x 1 = + (K=0,1,2,...). Com base nas ideias de
Stewart (2008) e Trigueros et al. (2012), foi possível identificar algumas
características que evidenciassem as diferentes concepções dos estudantes. Além
disso, foram consideradas algumas ideias que caracterizam o conceito imagem e
definição de acordo com Vinner (1991) e Domingos (2003). Como resultado desta
investigação, identificou-se que os alunos do primeiro estudo de caso, em fases
distintas de formação, apresentam a concepção processo e o conceito imagem em
nível instrumental do objeto matemático autovalor e autovetor. Já os alunos do
segundo de caso, particularmente, todos os da primeira fase, e dois da segunda
apresentaram indícios da concepção ação e conceito imagem em nível incipiente.
Apenas um aluno da segunda fase também evidenciou ter a concepção processo e
o conceito imagem em nível instrumental, como os sujeitos do primeiro estudo de
caso. Portanto, constatou-se que não houve evolução significativa entre as
concepções inerentes à Teoria APOS e os conceitos imagem do objeto de estudo.
Evidenciou-se que todos os alunos apresentaram em seus discursos relações
existentes entre a disciplina Álgebra Linear e demais disciplinas do curso, como
Cálculo Numérico, Circuitos Elétricos, Computação Gráfica e Sistemas de Controle,
com menor ou maior grau de profundidade e conhecimento. Percebe-se que os
alunos atribuem relevância às disciplinas matemáticas em suas formações e buscam
por um novo enfoque de ensino que contemple as relações entre as mesmas e as
disciplinas da Engenharia
|
13 |
Alunos que completaram um curso de extensão em álgebra linear e suas concepções sobre base de um espaço vetorialPrado, Eneias de Almeida 07 May 2010 (has links)
Made available in DSpace on 2016-04-27T16:59:05Z (GMT). No. of bitstreams: 1
Eneias de Almeida Prado.pdf: 1754113 bytes, checksum: 4f347ae679598e17485474c1d80187f6 (MD5)
Previous issue date: 2010-05-07 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / The purpose of this study was to indentify the basis conception of the IR vetorial
space finitely generated by students who concluded an extension course in Linear
Algebra. The relevance of the research is in the importance attributed to this
discipline in the professional education of Exact Sciences and others, and in the
need to investigate its teaching and its learning, according to the opinion of many
researchers, as Dubinsky (1991;2001); Dorier et al (1997); Machado e Bianchini
(2009). For such, the theoretical ground used was APOS, developed by Dubinsky
and collaborators that allowed the refinement of a genetical decomposition for the
notion of basis which approached three points of view from this notion: maximal
group of vectorials linearly independent; minimal group of generating vectors and
justaposition between the two latters. The data survey was held by semistructured
interviews to 10 subjects graduating from the same extension course, characterizing
it as a qualitative case study. The analysis held indicates that five students built an
object conception and incorporated the notion of dimension to their scheme, using
indistincvely the dimension to one of three notions of basis. A student was able to
build a process conception and another, an action conception. After two courses of
Linear Algebra, the studens conceived basis, mainly, with being the independent
linearly generating group, and only two of the interviewed perceived the equivalence
among the points of view approached / Este estudo teve o objetivo de identificar a concepção de base de um IR-espaço
vetorial finitamente gerado de alunos que concluíram um curso de extensão em
Álgebra Linear. A relevância da pesquisa reside na importância atribuída a essa
disciplina na formação de profissionais das Ciências Exatas e afins, e na
necessidade de investigar seu ensino e sua aprendizagem, conforme opinião de
vários pesquisadores, como Dubinsky (1991; 2001); Dorier et al. (1997); Machado e
Bianchini (2009). Para tanto, utilizou-se o aporte da teoria APOS, desenvolvida por
Dubinsky e colaboradores que permitiu o refinamento de uma decomposição
genética para a noção de base que abordou os três pontos de vista dessa noção:
conjunto maximal de vetores linearmente independentes; conjunto minimal de
vetores gerador e a justaposição entre as duas anteriores. A coleta de dados foi
realizada por meio de entrevistas semiestruturadas a 10 sujeitos concluintes de um
mesmo curso de extensão, caracterizando-se como um estudo qualitativo de caso. A
análise realizada indica que cinco estudantes construíram uma concepção objeto e
incorporaram a noção de dimensão a seu esquema, utilizando indistintamente a
dimensão a uma das três noções de base. Um estudante mostrou ter construído
concepção processo e outro, concepção ação. Após dois cursos de Álgebra Linear,
os estudantes concebem base, sobretudo, como sendo um conjunto gerador
linearmente independente, e só dois dos entrevistados perceberam a equivalência
entre os pontos de vista abordados
|
14 |
An investigation into the use of problem-solving heuristics to improve the teaching and learning of mathematicsOfori-Kusi, Daniel 02 November 2017 (has links)
The aim of this study was to explore the effects of a problem-solving heuristic instructional method on Grade 6 learners’ achievements in algebra. Two main theories inspired the design of this teaching method, namely the modelling and modelling perspective, and action, process, object, schema (APOS) theory. Modelling and modelling perspectives guided the development of modelling-eliciting activities used in the teaching method and the APOS theory guided the sequence of activities used to develop Grade 6 learners’ conceptions in algebra.
The impact of the problem-solving heuristic instructional method was investigated with 198 Grade 6 learners from four different primary schools in the Zululand district of Kwazulu-Natal that were conveniently sampled. A mixed-method approach was used in this study and a hypothesis was formulated to investigate the effects of the teaching method on the learners’ achievements in algebra. The qualitative component consisted of a pre-intervention class observation of mathematics lessons of all four mathematics educators in the schools used for this study. The design and implementation of the problem-solving heuristic instructional method and the quantitative component employed non-equivalent control group design with pre-test and post-test measure.
The main instruments for data collection were an observation schedule to document sequence of events in the classroom during the class observation, a standardized achievement test in algebra used to measure effects of the problem-solving heuristic instructional method and modelling-eliciting activities used as a medium of interaction between learners and the researcher during the implementation of the problem-solving heuristic instructional method.
Findings from the class observation indicated all four schools made use of comparable traditional methods of instruction. The implementation of the problem-solving instructional method gave insights into how a problem-solving heuristic instructional method can be developed and used in Grade 6 algebra lessons, and the factors that could influence learners’ conceptual development in algebra. The findings from the quantitative component supported the initial hypothesis that improved scores in algebra are achieved through participation in the problem-solving heuristic instructional method. Quantitative data was analysed using the t-test, analysis of covariance, Johnson-Neyman (J-N) technique and the effect size. / Mathematics Education / D. Phil. (Mathematics Education)
|
15 |
Exploring the causes of the poor performance by Grade 12 learners in Calculus-based tasksDlamini, Reuben Bafana 07 1900 (has links)
The study attempted to determine the causes of poor performance among Grade 12 learners in tasks involving calculus, especially in cubic graphs and the application of differential calculus. The study was conducted in three schools of the Msukaligwa 1 Circuit in the Gert Sibande District, Mpumalanga Province in South Africa.
Differential calculus is a branch of mathematics that is concerned mainly with the study of the rate of change of functions with respect to their variables especially through the use derivatives and differentials. Students have difficulties in learning and mastering this section of calculus as is revealed by examiners’ and moderators’ reports year after year. The purpose of this study was to investigate the possible reasons for the poor performance by Grade 12 learners in calculus-based tasks, especially in cubic graphs and the application in optimisation.
The study sought to investigate the causes of the poor performance by Grade 12 learners in tasks based on these two subtopics of calculus. Three schools were selected by means of purposive sampling: one former model C, one Mathematics, Science and Technology Academy (MSTA) and one other school that does not fall in either of these two categories. This enabled the study to have participants from diverse backgrounds.
A qualitative research design was used. Data was collected using learners’ scripts for the three formal tasks: May common test, June (midyear) and Trial (preparatory) examinations. Only the questions involving cubic graphs and the application of calculus were part of the study. Analysis was done in order to determine learners’ challenges, common mistakes, and misconceptions, but also of good responses given by learners. / Mathematics Education / M. Ed. (Mathematics Education)
|
Page generated in 0.0213 seconds