11 |
Circuito integrado para multiplicação em GF(24) utilizando portas de limiar linear. / Integrated circuit for GF multiplication (24) using linear threshold ports.LIMA FILHO, Cristóvão Mácio de Oliveira. 20 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-20T19:33:13Z
No. of bitstreams: 1
CRISTOVÃO MÁCIO DE OLIVEIRA LIMA FILHO - DISSERTAÇÃO PPGEE 2010..pdf: 2095765 bytes, checksum: 1c2232fd0f1557df7308e04bad6426c2 (MD5) / Made available in DSpace on 2018-08-20T19:33:13Z (GMT). No. of bitstreams: 1
CRISTOVÃO MÁCIO DE OLIVEIRA LIMA FILHO - DISSERTAÇÃO PPGEE 2010..pdf: 2095765 bytes, checksum: 1c2232fd0f1557df7308e04bad6426c2 (MD5)
Previous issue date: 2010-06-09 / Esta dissertação descreve o desenvolvimento de um leiaute de uma nova arquitetura de
multiplicador em corpos finitos baseada no multiplicador de Mastrovito. Tal arquitetura
tem como unidades de processamento as portas de limiar linear, que é o elemento básico
de uma rede neural discreta. As redes neurais discretas implementadas com portas de limiar linear permitem reduzir
a complexidade de certos circuitos antes implementados com lógica tradicional (Portas
AND, OR e NOT). Com isso, a idéia de estender o uso de portas de limiar linear em
operações aritméticas em corpos finitos se torna bastante atraente. Assim, para
comprovar de forma prática, a eficiência das portas de limiar linear, a arquitetura de um
multiplicador em GF(24), proposta em (LIDIANO - 2000), foi implementada utilizando
as ferramentas de desenho de leiaute de circuito integrado da Mentor Graphics®. Os resultados da simulação do leiaute do circuito integrado do multiplicador em GF(24)
são apresentados. Os mesmos indicaram um desempenho abaixo do esperado, devido a
complexidade espacial do multiplicador em GF(2n) com 4=n não ser suficiente para
que as vantagens da implementação com portas de limiar linear sejam visualizada. / This dissertation describes the development of a layout of new multiplication
architecture in Galois field based on the Mastrovito multiplier. The processing unit of
this new architecture is a threshold logic gate, which is a basic element of a discrete
neural network. The discrete neural network built with threshold logic gates allow reduce de complexity
of a certain circuits once built using traditional boolean gates (AND, OR and NOT).
Therewith, the idea of extending the advantages of the threshold logic gates for
arithmetic operations in Galois field to become very attractive. Thus, to confirm into
practice form, the advantages of the threshold logic gates, a multiplier architecture in
GF(24), proposed in (LIDIANO - 2000), was implemented using the integrated circuit
layout tools of Mentor Graphics®. The results from simulations of the layout of multiplier in GF(24) are presented. These results indicated a low performance, due to the space complexity of GF(2n) multiplier with n = 4 is not enough for show the advantages of the multiplier implementation with threshold logic gates.
|
12 |
Congruências modulares : construindo um conceito e as suas aplicações no ensino médioBarbosa Junior, José Hélio 11 April 2013 (has links)
The purpose of this dissertation is to present to the students of basic education a powerful tool in the resolution of Arithmetic such as Modular Congruence. We initiate our study by approaching the main basics concepts of Number Theory: Divisibility, Eucledian Division, Greatest Common Divisor, Remainder modular arytmetics, culminating with Modular Congruence and its applications: Chinese Remainder Theorem and Intergers. / A presente dissertação tem como objetivo apresentar aos alunos do ensino básico uma poderosa ferramenta na resolução de problemas aritméticos, que é a Congruência modular. Para tanto, iniciamos nosso estudo abordando conceitos básicos da teoria dos números: divisibilidade, divisão euclidiana, máximo divisor comum, mínimo múltiplo comum, análise de restos, culminando com a congruência modular e algumas de suas aplicações: Teorema Chinês dos restos e Partilha de senhas.
|
13 |
Aritmética modular, códigos elementares e criptografiaBarreto, Regene Chaves Pimentel Pereira 29 August 2014 (has links)
The main objective of this work is to treat the modular arithmetic of whole
numbers, and show evidence of some types of elementary code such as Cesar's, A m,
of Vigenere's, Hill's, RSA, Rabin's, MH and ElGamal, those found in cryptography,
highlighting the mathematics which exists behind the function of each of them. We
have studied the concepts of modular arithmetic and applied them to the study of
matrices and determinants that are necessary for the function of these codes and for
the evolution of cryptography. We also present some codes found in our day-to-day
life, aiming to stimulate the curiosity of the reader into discovering these codes.
Finally, for complementary information purposes, we reveal a brief collected history
of cryptography. / O presente trabalho tem como principal objetivo tratar de aritmética modular
dos inteiros e evidenciar alguns tipos de códigos elementares, a exemplo dos Códigos
de César, Afim, de Vigenère, de Hill, RSA, de Rabin, MH e ElGamal, existentes
na criptografia, ressaltando a matemática que existe por trás do funcionamento
de cada um deles. Estudamos conceitos de aritmética modular e os aplicamos ao
estudo de matrizes e determinantes que se fazem necessários para o funcionamento
desses códigos e para a evolução da criptografia. Apresentamos ainda alguns códigos
encontrados no nosso dia a dia, buscando estimular a curiosidade do leitor pelo
conhecimento dos códigos. Por fim, a título de informação complementar, expomos
um breve apanhado histórico da criptografia.
|
Page generated in 0.013 seconds