51 |
Impedance properties of an infinite array of non-planar rectangular loop antennas embedded in a general stratified medium /Kent, Brian Michael January 1984 (has links)
No description available.
|
52 |
Admittance properties of a slot array with parasitic wire arrays in a stratified medium /Ng, Kwong-Tai January 1985 (has links)
No description available.
|
53 |
Investigation of the radiation imaging properties of pyroelectric detector arrays /Schlosser, Philip A. January 1972 (has links)
No description available.
|
54 |
Adaptive antenna arrays for coded communication systems /Reinhard, Kenneth Lynn January 1973 (has links)
No description available.
|
55 |
Moment method calculation of reflection coefficient for waveguide elements in a finite planar phased antenna array /Fenn, Alan Jeffrey January 1978 (has links)
No description available.
|
56 |
Deployment and Monitoring of an X-Band Dual-Polarization Phased Array Weather RadarMasiunas, Lauren 07 November 2014 (has links) (PDF)
This thesis describes the deployment of MIRSL's X-band dual-polarization Phase-Tilt Weather Radar (PTWR) at the University of Texas at Arlington during spring 2014. While this radar has been used to observe weather in Western Massachusetts, more observations of severe weather were required to determine the limits of its abilities in sensing more rapidly evolving weather systems. This site was chosen also for its proximity to the Dallas-Fort Worth Urban Testbed Network set up by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA), which provided the ability to compare and calibrate the PTWR data against another well-documented X-band weather radar. A data processing pipeline was developed for converting raw PTWR data to NetCDF format, which allows for easy sharing and mapping of weather data. Finally, this is the first in-depth documentation of the PTWR system and specifically the roof-mounted setup utilized for this deployment.
|
57 |
Analysis of the Radiation Mechanisms in and Design of Tightly-Coupled Antenna ArraysVogler, Terry Richard 16 November 2010 (has links)
The objective of this research is to design well-tuned, wideband elements for thin planar or cylindrically conformal arrays of balanced elements fed over ground. These arrays have closely spaced elements to achieve wide bandwidths through mutual coupling. This dissertation develops two wideband designs in infinite, semi-infinite, and finite array configurations. The infinite array is best for element tuning. This research advances a concept of a distributed, parallel capacitance between elements and across feeds that must be mutually altered for tuning.
Semi-infinite techniques limit the problem space and determine the proper resistive loads to control the low-frequency array-guided surface wave (AGSW). The tight physical placement also forms a periodic structure that, along with the array boundary, launches a wave across the array surface. Options to suppress this surface wave are resistive loading and cylindrical conformations. AGSW control is necessary to achieve a maximum bandwidth, but lower radiation or aperture efficiency results. Conformation is shown to be an ineffective method for AGSW control alone.
The Wrapped Bowtie design emerges as a novel design offering nearly a 10:1 bandwidth as a finite array over ground. Some bandwidth comes from the losses in radiation efficiency, which is necessary to control the AGSW; however, its simulated VSWR < 3 bandwidth in an infinite array is 7.24:1 with full efficiency. Less than perfect efficiency is required to mitigate surface wave effects, unless bandwidth is to be compromised. That loss may be as radiation or aperture efficiency, but it is unavoidable if the infinite array bandwidth is to be maintained in finite array designs.
Lastly, this research articulates a development path for tightly-coupled arrays that extends in stages from infinite to semi-infinite, and thence finite layouts. Distinctions are explained and defended for the design focus at each stage. Element design, tuning, and initial feed design occur at the infinite array stage; AGSW suppression occurs at the semi-infinite stage; and design confirmation occurs only with the finite array. / Ph. D.
|
58 |
An Interactive Menu-Driven Design Tool For Stand-Alone Photovoltaic SystemsWolete, Joseph N. 19 February 1998 (has links)
The use of Photovoltaic (PV) systems to meet energy demand in rural or remote regions of the world is growing at a very fast pace. Rural electrification projects in developing countries have relied primarily on subsidies from both the government and the national utility. Since using the national grid to meet energy demand in these areas has been found to be quite expensive over time, governments in developing countries have turned to photovoltaic technology as a means of providing electricity needs to their rural population.
To facilitate the use of PV systems in developing countries, the author has developed an interactive menu-driven design tool called PVONE that may serve as a guide to engineers and government officials to decide whether a stand-alone photovoltaic system is feasible at a location. PVONE consists of three parts - insolation, system design and economic analysis. In order to predict insolation, PVONE first utilizes the clear sky insolation model that is based on latitude, longitude and altitude of a location. Then it incorporates the standard classification criteria to classify the days of a month according to day types. Based on how the days are classified, a new set of insolation is predicted. For system design, the PVONE program is used to determine the array characteristics based on the chosen photovoltaic module, the system design load and the daily insolation at the location. To determine whether the proposed system is feasible at the location, the PVONE program performs an energy output analysis and economic analysis. The system designed is considered feasible at the location only if it satisfies the load demand and has a positive net present value. / Master of Science
|
59 |
Numerical Study of Conjugate Natural Convection Heat Transfer Using One Phase Liquid CoolingGdhaidh, Farouq A.S., Hussain, Khalid, Qi, Hong Sheng January 2014 (has links)
Yes / A numerical study in 3-D is performed using water as a cooling fluid to investigate the one phase natural convection heat transfer within enclosure. A heat source representing a computer CPU mounted on one vertical wall of a rectangular enclosure is simulated while a heat sink is installed on the opposite vertical wall of the enclosure. The air flow inside the computer compartment is created by using an exhaust fan, and the flow is assumed to be turbulent. The applied power considered ranges from 15 40 W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the dimension of the enclosure are investigated. The results illustrate that as the size of the enclosure increase the chip temperature declined. However the drop in the temperature is very small when the width increased more than 50 mm. When the enclosure was filled with water the temperature was reduced by 38%. Also the cooling system maintains the maximum chip temperature at 71.5 C when the heat input of 40 W was assumed and this is within the current recommended computer electronic chips temperature of no more than 85 degrees C.
|
60 |
Planar array design and analysis on direction of arrival estimation for mobile communication systemsSanudin, Rahmat January 2014 (has links)
The demand of wireless communication has increased significantly in the past few decades due to huge demand to deliver multimedia content instantly. The expansion of mobile content paired with affordable mobile devices has opened a new trend for having access to the latest information on mobile devices. This trend is made possible by the technology of smart antenna systems as well as array signal processing algorithms. Array signal processing is not limited to wireless communication, but also found in other applications such as radar, sonar and automotive. One of the important components in array signal processing is its ability to estimate the direction of incoming signals known as directional-of-arrival (DOA). The performance of DOA algorithms depends on the steering vector since it contains information about the direction of incoming signals. One of the main factors to affect the DOA estimation is the array geometries since the array factor of the array geometries determines the definition of the steering vector. Another issue in DOA estimation is that the DOA algorithms are designed based on the ideal assumption that the antenna arrays are free from imperfection conditions. In practice, ideal conditions are extremely difficult to obtain and thus the imperfect conditions will severely degraded the performance of DOA estimation. The imperfect conditions include the presence of mutual coupling between elements and are also characteristic of directional antenna. There are three topics being discussed in this thesis. The first topic being investigated is new geometry of antenna array to improve the performance of DOA estimation. Two variants of the circular-based array are proposed in this thesis: semi-circular array and oval array. Another proposed array is Y-bend array, which is a variant of V-shape array. The proposed arrays are being put forward to offer a better performance of DOA estimation and have less acquired area compared with the circular array. It is found out that the semi-circular array has 5.7% better estimation resolution, 76% lower estimation error, and 20% higher estimation consistency than the circular array. The oval array improves the estimation resolution by 33%, estimation error by 60%, and estimation consistency by 20% compared with the circular array. In addition, for the same number of elements, the oval array requires 12.5% to 15% less area than the circular array. The third proposed array, Y-bend array, has 23% smaller estimation resolution, 88% lower estimation error, and 7% higher estimation consistency than the V-shape array. Among the proposed arrays, the semi-circular possessed the best performance with 25% smaller estimation resolution, ten times smaller estimation error, and 5% higher estimation consistency over the other proposed arrays. Secondly, this thesis investigates the DOA estimation algorithm when using the directional antenna array. In this case, a new algorithm is proposed in order to suit the characteristics of the directional antenna array. The proposed algorithm is a modified version of the Capon algorithm, one of the algorithms in beamforming category. In elevation angle estimation, the proposed algorithm achieves estimation resolution up to 1°. The proposed algorithm also manages to improve the estimation error by 80% and estimation consistency by 10% compared with the Capon algorithm. In azimuth angle estimation, the proposed algorithm achieves 20 times lower estimation error and 20% higher estimation consistency than the Capon algorithm. These simulation results show that the proposed algorithm works effectively with the directional antenna array. Finally, the thesis proposes a new method in DOA estimation process for directional antenna array. The proposed method is achieved by means of modifying covariance matrix calculation. Simulation results suggest that the proposed method improves the estimation resolution by 5° and the estimation error by 10% compared with the conventional method. In summary, this thesis has contributed in three main topics related to DOA estimation; array geometry design, algorithm for the directional antenna array, and method in DOA estimation process for the directional antenna array.
|
Page generated in 0.0469 seconds