• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A COMPARATIVE STUDY OF EQUIVALENT LATERAL FORCE METHOD AND RESPONSE SPECTRUM ANALYSIS IN SEISMIC DESIGN OF STRUCTURAL FRAMES

Shrestha, Santosh 01 August 2019 (has links)
Equivalent Lateral Force Method (ELF) and Response Spectrum Analysis (RSA) are the two most popular methods of seismic design of structures. This study aims to present a comparative study of the two methods using hand-calculated approach as well as computer analysis according to ASCE 7-10 Standards. The two methods have been compared in terms of base shear and story forces by analyzing various models for different number of stories and different support conditions. It was found that ELF gives conservative results in comparison to RSA. This result was more obvious in case of four-story frames. Hence, for structures of increased elevation, the analysis from ELF may not be sufficient.
2

Preliminary Structural Optimization and Validation of Steel Purlins in Solar Canopies

Pfister, Sarah Catherine 23 May 2019 (has links)
No description available.
3

Comparative Study of Seismic Performance of Reinforced Concrete Buildings designed in accordance with the Seismic Provisions of ASCE 7-10 and IS 1893-2002

Jadhav, Sagar M. 14 October 2013 (has links)
No description available.
4

Performance Assessment of Seismic Resistant Steel Structures

Jarrett, Jordan Alesa 30 December 2013 (has links)
This work stems from two different studies related to this performance assessment of seismic resistant systems. The first study compares the performance of newly developed and traditional seismic resisting systems, and the second study investigates many of the assumptions made within provisions for nonlinear response history analyses. In the first study, two innovative systems, which are hybrid buckling restrained braces and collapse prevention systems, are compared to their traditional counterparts using a combination of the FEMA P-695 and FEMA P-58 methodologies. Additionally, an innovative modeling assumption is investigated, where moment frames are evaluated with and without the lateral influence of the gravity system. Each system has a unique purpose from the perspective of performance-based earthquake engineering, and analyses focus on the all intensity levels of interest. The comparisons are presented in terms consequences, including repair costs, repair duration, number of casualties, and probability of receiving an unsafe placard, which are more meaningful to owners and other decision makers than traditional structural response parameters. The results show that these systems can significantly reduce the consequences, particularly the average repair costs, at the important intensity levels. The second study focuses on the assumptions made during proposed updates to provisions for nonlinear response history analyses. The first assumption investigated is the modeling of the gravity system's lateral influence, which can have significant effect on the system behavior and should be modeled if a more accurate representation of the behavior is needed. The influence of residual drifts on the proximity to collapse is determined, and this work concludes that a residual drift check is unnecessary if the only limit state of interest is collapse prevention. This study also finds that spectrally matched ground motions should cautiously be used for near-field structures. The effects of nonlinear accidental torsion are also examined in detail and are determined to have a significant effect on the inelastic behavior of the analyzed structure. The final investigation in this study shows that even if a structure is designed per ASCE 7, it may not have the assumed probability of collapse under the maximum considered earthquake when analyzed using FEMA P-695. / Ph. D.
5

LATERAL DISPLACEMENT OF REINFORCED CONCRETE FRAME BUILDINGS

Yuan, Mengfei January 2014 (has links)
No description available.
6

Seismic Design of Reinforced Concrete Buildings Using Bangladesh National Building Code (BNBC 1993) and Comparison with Other Codes (ASCE 7-10 And IS 1893-2002)

Rahman, Muhammad Mostafijur 07 November 2017 (has links)
No description available.

Page generated in 0.017 seconds