• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 30
  • 12
  • 8
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 261
  • 49
  • 42
  • 35
  • 31
  • 31
  • 30
  • 28
  • 25
  • 21
  • 19
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Techno-Economic Study of CO<sub>2</sub> Capture Process for Cement Plants

Hassan, S. M. Nazmul January 2005 (has links)
Carbon dioxide is considered to be the major source of GHG responsible for global warming; man-made CO<sub>2</sub> contributes approximately 63. 5% to all greenhouse gases. The cement industry is responsible for approximately 5% of global anthropogenic carbon dioxide emissions emitting nearly 900 kg of CO<sub>2</sub> for every 1000 kg of cement produced! Amine absorption processes in particular the monoethanolamine (MEA) based process, is considered to be a viable technology for capturing CO<sub>2</sub> from low-pressure flue gas streams because of its fast reaction rate with CO<sub>2</sub> and low cost of raw materials compared to other amines. However, MEA absorption process is associated with high capital and operating costs because a significant amount of energy is required for solvent regeneration and severe operating problems such as corrosion, solvent loss and solvent degradation. This research was motivated by the need to design size and cost analysis of CO<sub>2</sub> capture process from cement industry. MEA based absorption process was used as a potential technique to model CO<sub>2</sub> capture from cement plants. In this research four cases were considered all to reach a CO<sub>2</sub> purity of 98% i) the plant operates at the highest capacity ii) the plant operates at average load iii) the plant operates at minimum operating capacity and iv) switching to a lower carbon content fuel at average plant load. A comparison among four cases were performed to determine the best operating conditions for capturing CO<sub>2</sub> from cement plants. A sensitivity analysis of the economics to the lean loading and percent recovery were carried out as well as the different absorber and striper tray combinations.
142

A study of the order and nature of the aspenwood hemicellulose removed during a neutral sulfite semichemical cook.

Quick, Robert Harold 01 January 1955 (has links)
No description available.
143

A study of the components of the lead subacetate precipitate of the leaves of populus tremuloides

Kinsley, Homan, Jr. 01 January 1967 (has links)
No description available.
144

The effect on pulp quality of the stepwise removal and replacement of the hemicelluloses from aspen holocellulose

March, Robert Eugene 01 January 1946 (has links)
No description available.
145

In vitro isolation and propagation of mammatoxin-resistant aspen

Wann, Steven R. 01 January 1985 (has links)
No description available.
146

Thermodynamics of CO₂ loaded aqueous amines

Xu, Qing, doctor of chemical engineering. 31 January 2012 (has links)
Thermodynamics is important for the design of amine scrubbing CO₂ capture processes. CO₂ solubility and amine volatility in aqueous amines were measured at high temperature and pressure. A rigorous thermodynamic model was developed for MEA-CO₂-H₂O in Aspen Plus®. CO₂ solubility at 80-190°C was obtained from total pressure measurements. Empirical models as a function of temperature and loading were developed for CO₂ solubility from 40 to 160°C in aqueous monoethanolamine (MEA), piperazine (PZ), 1-methylpiperazine (1MPZ), 2-methylpiperazine (2MPZ), PZ/2MPZ, diglycolamine® (DGA®), PZ/1MPZ/1,4-dimethylpiperazine (1,4-DMPZ), and PZ/methyldiethanolamine (MDEA). The high temperature CO₂ solubility data for MEA is comparable to literature and compatible with previous low temperature data. For MEA and PZ, amine concentration does not have obvious effects on the CO₂ solubility. The heat of CO₂ absorption derived from these models varies from 66 kJ/mol for 4 m (molal) PZ/4 m 2MPZ and to 72, 72, and 73 kJ/mol for MEA, 7 m MDEA/2 m PZ, and DGA. The heat of absorption estimated from the total pressure data does not vary significantly with temperature. At 0-0.5 loading ([alpha]), 313-413 K, 3.5-11 m MEA (mol fraction x is 0.059-0.165), the empirical model of MEA volatility is ln(PMEA/xMEA) = 30.0-8153/T-2594[alpha]²/T. In 7 m MEA with 0.2 and 0.5 loading, PMEA is 920 and 230 Pa at 120°C. At 0.3-0.5 loading, the enthalpy of MEA vaporization, -[Delta]Hvap,MEA, is about 70-73 kJ/mol MEA. At 0.25-0.4 loading, 313-423 K, 4.7-11.3 m PZ (x is 0.078-0.169), the empirical model of PZ volatility is ln(PPZ/xPZ) = -123+21.6lnT+20.2[alpha]-18174[alpha]²/T. In 8 m PZ with 0.3 and 0.4 loading, PPZ is 400 and 120 Pa at 120°C, and 2620 and 980 Pa at 150°C. At 0.25-0.4 loading, -[Delta]Hvap,PZ is about 85-100 kJ/mol PZ at 150°C and 66-80 kJ/mol PZ at 40°C. [Delta]Hvap,PZ has a larger dependence on CO₂ loading than [Delta]Hvap,MEA in rich solution because of the more complex speciation/reactions in PZ at rich loading. Specific heat capacity of 8 m PZ is 3.43-3.81 J/(g•K) at 70-150°C. Two new thermodynamic models of MEA-CO₂-H₂O were developed in Aspen Plus® starting with the Hilliard (2008) MEA model. One (Model B) includes a new species MEACOOH and it gets a better prediction than the other (Model A) for CO₂ solubility, MEA volatility, heat of absorption, and other thermodynamic results. The Model B prediction matches the experimental pKa of MEACOOH, and the measured concentration of MEACOO-/MEACOOH by NMR. In the prediction the concentration of MEACOOH is 0.1-3% in 7 m MEA at high temperature or high loading, where the heat of formation of MEACOOH has effects on PCO₂ and CO₂ heat of absorption. Model B solved the problems of Model A by adding MEACOOH and matched the experimental data of pKa and speciation, therefore MEACOOH may be considered an important species at high temperature or high loading. Although mostly developed from 7 m MEA data, Model B also gives a good profile for 11 m (40 wt%) MEA. / text
147

Parallel-Powered Hybrid Cycle with Superheating “Partially” by Gas Turbine Exhaust

Ghasemi, Milad, Hammodi, Hassan, Moosavi Sigaroodi, Homan January 2014 (has links)
It is of great importance to acquire methods that has a sustainable solution for treatment and disposal of municipal solid waste (MSW). The volumes are constantly increasing and improper waste management, like open dumping and landfilling, causes environmental impacts such as groundwater contamination and greenhouse gas emissions. The rationalization of developing a sustainable solution implies in an improved way of utilizing waste resources as an energy source with highest possible efficiency. MSW incineration is by far the best available way to dispose the waste. One drawback of conventional MSW incineration plants is that when the energy recovery occurs in the steam power cycle configuration, the reachable efficiency is limited due to steam parameters. The corrosive problem limits the temperature of the superheated steam from the boiler which lowers the efficiency of the system. A suitable and relatively cheap option for improving the efficiency of the steam power cycle is the implementation of a hybrid dual-fuel cycle. This paper aims to assess the integration of an MSW incineration with a high quality fuel conversion device, in this case natural gas (NG) combustion cycle, in a hybrid cycle. The aforementioned hybrid dual-fuel configuration combines a gas turbine topping cycle (TC) and a steam turbine bottoming cycle (BC). The TC utilizes the high quality fuel NG, while the BC uses the lower quality fuel, MSW, and reaches a total power output of 50 MW.  Using a high-quality fuel in cogeneration can prove to be beneficial for improving and enhancing the overall plant profitability and efficiency while eliminating the corrosion problems with conventional MSW firing. The need for few interconnections between the different subunits in a parallel-fueled system allows for a wider range of operation modes and leaves room for service modes of the subunit. The hybrid dual-fuel cycle will be assessed for optimal cycle configuration and evaluated to how it compares to the sum of two separate single-fuel plants with optimal cycle configurations. Investigation of such aspects is a very important issue in order to be able to fully promote an implementation of hybrid combined cycle. The work presented herein also concentrates on investigating scenarios that include a full-load and part-load analysis in both condensing and combined heat and power (CHP) mode of operation. Through simulations and evaluation of obtained data, the results strengthens the fact that the electrical efficiency of hybrid configurations increases at least with 2% in condensing mode and 1,5% in CHP mode, comparing it to the sum of two separate single-fuel units of similar scale. The simulations show increased electrical efficiencies when running the BC in part-load and the TC in full load, with a higher NG to MSW ratio. The results also indicated that it is possible to extract more power output from the cycle by operating in CHP mode, due to more energy being utilized from the input fuel.
148

Classification of trembling aspen ecosystems in British Columbia

Klinka, Karel January 2001 (has links)
This pamphlet provides a summary of a fuller report issued under the same title.
149

Classification of trembling aspen ecosystems in British Columbia. Full report.

Krestov, Pavel, Klinka, Karel, Chourmouzis, Christine, Hanel, Claudia 03 1900 (has links)
This full report presents the first approximation of vegetation classification of trembling aspen ecosystems in interior British Columbia. The classification is based on a total of 186 plots sampled during the summers of 1995, 1997 and 1998. We used multivariate and tabular methods to synthesize and classify ecosystems according to the Braun-Blanquet approach and the methods of biogeoclimatic ecosystem classification. The aspen ecosystems were classified into 15 basic vegetation units (associations or subassociations) that were grouped into four alliances. Communities of the Populus tremuloides – Mertensia paniculata, and Populus tremuloides – Elymus innovatus alliances were aligned with the boreal Picea glauca & mariana order and were distributed predominantly in the Boreal White and Black Spruce zone; communities of the Populus tremuloides – Thalictrum occidentale alliance were also aligned with the same order, but were distributed predominantly in the Sub-Boreal Spruce zone; communities of the Populus tremuloides – Symphoricarpos albus alliance were aligned with the wetter cool temperate Tsuga heterophylla order and the drier cool temperate Pseudotsuga menziesii order and were distributed in the Sub-boreal Spruce, Interior Western Hemlock, Montane Spruce, and Interior Douglas-fir zones. We describe the vegatation and environmental features of these units and present vegetation and environmental tables for individual plots and units.
150

The cost of longevity: loss of sexual function in natural clones of Populus tremuloides

Ally, Dilara 05 1900 (has links)
Most clonal plants exhibit a modular structure at multiple levels. At the level of the organs, they are characterized by functional modules, such as, internodes, leaves, branches. At the level of the genetic individual (clone or genet), they possess independent evolutionary and physiological units (ramets). These evolutionary units arise through the widespread phenomenon of clonal reproduction, achieved in a variety of ways including rhizomes, stolons, bulbils, or lateral roots. The focus of this study was Populus tremuloides, trembling aspen, a dioecious tree that reproduces sexually by seed and asexually through lateral roots. Local forest patches in western populations of Populus tremuloides consisted largely of multiple genotypes. Multi-clonal patches were dominated by a single genotype, and in one population (Riske Creek) we found several patches (five out of 17) consisting of a single genotype. A second consequence of modularity is that during the repeated cycle of ramet birth, development and death, somatic mutations have the opportunity to occur. Eventually, the clone becomes a mosaic of mutant and non-mutant cell lineages. We found that neutral somatic mutations accumulated across 14 microsatellite loci at a rate of between 10^-6 and 10^-5 per locus per year. We suggest that neutral genetic divergence, under a star phylogeny model of clonal growth, is an alternative way to estimate clone age. Previous estimates of clone age couple the mean growth rate per year of shoots with the area covered by the clone. This assumes a positive linear relationship between clone age and clone size. We found, however, no repeatable pattern across our populations in terms of the relationship of either shape or size to the number of somatic changes. A final consequence of modularity is that during clonal growth, natural selection is relaxed for traits involving sexual function. This means that mutations deleterious to sexual function can accumulate, reducing the overall sexual fitness of a clone. We coupled neutral genetic divergence within clones with pollen fitness data to infer the rate and effect of mildly deleterious mutations. Mutations reduced relative sexual fitness in clonal aspen populations by about 0.12x10^-3 to 1.01x10^-3 per year. Furthermore, the decline in sexual function with clone age is evidence that clonal organisms are vulnerable to the effects of senescence.

Page generated in 0.0198 seconds