• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 22
  • 14
  • 12
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulation dynamique de dérives de procédés chimiques : application à l'analyse quantitative des risques. / Dynamic simulation of chemical process deviations application to quantitative risk analysis

Berdouzi, Fatine 28 November 2017 (has links)
Les risques sont inhérents à l’activité industrielle. Les prévoir et les maîtriser sont essentiels pour la conception et la conduite en sécurité des procédés. La réglementation des risques majeurs impose aux exploitants la réalisation d’études de sécurité quantitatives. La stratégie de maîtrise des risques repose sur la pertinence des analyses de risques. En marche dégradée, la dynamique des événements est déterminante pour quantifier les risques. Toutefois, de nos jours cette connaissance est difficilement accessible. Ce travail propose une méthodologie d’analyse de risques quantitative qui combine la méthode HAZOP, le retour d’expérience et la simulation dynamique de dérives de procédés. Elle repose sur quatre grandes étapes : La première étape est l’étude du fonctionnement normal du procédé. Pour cela, le procédé est décrit de façon détaillée. Des études complémentaires de caractérisation des produits et du milieu réactionnel sont menées si nécessaires. Ensuite, le procédé est simulé dynamiquement en fonctionnement normal. Lors de la seconde étape, parmi les dérives définies par l’HAZOP et le retour d’expérience, l’analyste discrimine celles dont les conséquences ne sont pas prévisibles et/ou nécessitent d’être quantifiées. La troisième phase fournit une quantification du risque sur la base de la simulation dynamique des scenarii retenus. Lors de la dernière étape, des mesures de maîtrise des risques sont définies et ajoutées au procédé lorsque le niveau de risque est supérieur au risque tolérable. Le risque résiduel est ensuite calculé jusqu’à l’atteinte de la cible sécurité. Le logiciel Aspen Plus Dynamics est sélectionné. Trois études de cas sont choisies pour démontrer d’une part, la faisabilité de la méthodologie et d’autre part, la diversité de son champ d’application : · la première étude de cas porte sur un réacteur semi-continu siège d’une réaction exothermique. L’oxydation du thiosulfate de sodium par le peroxyde d’hydrogène est choisie. Ce cas relativement simple permet d’illustrer la diversité des causes pouvant être simulées (erreur procédurale, défaut matériel, contamination de produits, …) et la possibilité d’étudier des dérives simultanées (perte de refroidissement du milieu et sous dimensionnement de la soupape de sécurité). · le deuxième cas concerne un réacteur semi-batch dans lequel une réaction exothermique de sulfonation est opérée. Elle est particulièrement difficile à mettre en œuvre car le risque d’emballement thermique est élevé. Cette étude montre l’intérêt de notre approche dans la définition des conditions opératoires pour la conduite en sécurité. · le troisième cas d’étude porte sur un procédé continu de fabrication du propylène glycol composé d’un réacteur et de deux colonnes de distillation en série. L’objectif est ici d’étudier la propagation de dérives le long du procédé. Sur la base du retour d’expérience, deux dérives au niveau du rebouilleur de la première colonne sont étudiées et illustrent les risques de pleurage et d’engorgement. La simulation dynamique illustre la propagation d’une dérive et ses conséquences sur la colonne suivante. / Risks are inherent to industrial activity. Predicting and controlling them is essential to the processes design and safe operation. Quantitative safety studies are imposed by the major hazard regulations. The risk management strategy relies on the relevance of risk analyzes. In degraded conditions, the dynamics of events are decisive for risks quantification. However, nowadays this knowledge is a real challenge. This work proposes a methodology of quantitative risk analysis, which combines the HAZOP method, the lessons learned from previous accidents and the dynamic simulation of process deviations. It is based on four main stages: The first stage is the study of the process normal operation. For this, the process is described in detail. Additional studies to characterize the products and the reaction are carried out if necessary. Then, the process is dynamically simulated in normal operation conditions. During the second step, among all the deviations defined by the HAZOP and lessons learned, the analyst discriminates those whose consequences are not predictable and/or need to be quantified. The third phase provides a risk quantification based on the dynamic simulation of the selected scenarios. In the last step, safety barriers are defined and added to the process when the risk level is greater than the tolerable risk. The residual risk is then calculated until the safety target is reached. Aspen Plus Dynamics software is selected. Three case studies are chosen in order to demonstrate, on the one hand, the feasibility of the methodology and, on the other hand, the diversity of its scope: · the first case study is a semi-continuous reactor with an exothermic reaction study. The oxidation of sodium thiosulfate by hydrogen peroxide is selected. This relatively simple case illustrates the diversity of causes that can be simulated (procedural error, material defect, product contamination …) and the possibility of studying simultaneous deviations (loss of cooling and under sized safety valve for example). · the second case concerns a semi-batch reactor in which an exothermic reaction of sulphonation is carried out. This reaction is particularly difficult to conduct because of the thermal runaway high risk. This study shows our approach’s interest in the definition of the operating conditions for safe operation. · the third case study concerns a continuous process of propylene glycol production. It is composed of a reactor and two distillation columns in series. The objective is to study the propagation of deviations along the process. Based on lessons learned, two deviations in the first column reboiler are studied and illustrate the flooding and weeping risks. Dynamic simulation illustrates the propagation of a deviation and its consequences on the second column
12

Gaseificação da biomassa para a produção de gás de síntese e posterior fermentação para bioetanol : modelagem e simulação do processo / Gasification of biomas for syngas production and subsequent fermentation to bioethanol : modeling and process simulation

Ardila, Yurany Camacho, 1985- 26 August 2018 (has links)
Orientadores: Maria Regina Wolf Maciel, Betânia Hoss Lunelli / Tese (doutorado) ¿ Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-26T13:48:19Z (GMT). No. of bitstreams: 1 Ardila_YuranyCamacho_D.pdf: 7705979 bytes, checksum: 19a2840a168991456944a44d857667ee (MD5) Previous issue date: 2015 / Resumo: A produção de biocombustíveis a partir da biomassa apresenta-se como uma alternativa para suprir as limitadas reservas de petróleo. A biomassa, atualmente, está sendo usada para diferentes processos termoquímicos, entre os quais a gaseificação é o de maior destaque. A gaseificação produz gás de síntese que é uma mistura, principalmente, de CO, H2 e CO2. Este gás serve para produzir energia, diferentes produtos químicos e biocombustíveis, como por exemplo, o bioetanol. A partir do gás de síntese, a produção de bioetanol pode ser realizada usando catalisadores químicos ou biocatalisadores, sendo este último processo conhecido como fermentação do gás de síntese. Para o processo integrado de gaseificação da biomassa e posterior fermentação para produção de bioetanol, as informações na literatura são escassas, o que dificulta avaliar a viabilidade desta nova tecnologia, em termos de condições operacionais. O uso de modelos matemáticos e sua simulação computacional podem auxiliar neste estudo. A literatura dispõe de vários estudos envolvendo simulações computacionais aplicadas à gaseificação de diferentes biomassas. Porém, poucos abordam a caracterização real do processo e as propriedades da biomassa utilizada, considerando apenas as propriedades para o carvão mineral, o que acaba gerando divergência nos resultados. Além disso, a maioria fundamenta suas simulações em modelos simples com base na caracterização elementar-imediata, que acaba limitando o desenvolvimento de plantas virtuais, que são baseadas na análise composicional da biomassa quando focadas na produção de bioetanol como etapa final ou como integração do processo. Assim, este trabalho tem como objetivos estudar o processo completo de gaseificação e realizar um estudo preliminar da fermentação do gás de síntese, mediante simulações computacionais, para definir as melhores condições e variáveis que afetam o processo global quando o bagaço de cana-de-açúcar é utilizado como matéria-prima. As simulações foram desenvolvidas utilizando o simulador comercial Aspen Plus¿ e os resultados validados com dados experimentais da literatura e dados obtidos nos Laboratórios LDPS/LOPCA/BIOEN/FEQ/UNICAMP. Para a completa simulação do processo, várias etapas foram estudadas e divididas para melhor entendimento. Foram desenvolvidos modelos matemáticos para predizer propriedades necessárias para o desenvolvimento de processos termoquímicos. Simulações baseadas nas análises elementar-imediata e composicional da biomassa foram realizadas para definir a decomposição inicial da biomassa, demonstrando os diferentes rendimentos e produtos que são gerados e que são a base da etapa inicial da gaseificação. Simulações completas da gaseificação foram desenvolvidas para estudar a gaseificação em diferentes tipos de reatores. A influência das condições de operação na gaseificação como temperatura, razão de equivalência (ER), injeção de vapor e temperatura do pré-aquecedor do ar no desempenho do gaseificador foram avaliadas. Com as condições operacionais da gaseificação definidas foi proposta uma simulação para representar a fermentação do gás de síntese. A partir dos resultados obtidos foi constatado que a composição do gás de síntese é alterada pelo aumento do ER e pela injeção de vapor no processo, e diferentes concentrações de bioetanol são obtidas quando a pressão de entrada do gás de síntese é alterada / Abstract: The production of biofuels from biomass is presented as an alternative to save the limited oil reserves. Currently, biomass is being used for different thermochemical processes, including gasification which is the most prominent. Gasification produces synthesis gas which is a mixture mainly of CO, H2 and CO2. This gas is used to produce energy, several chemicals and biofuels, such as ethanol. The ethanol from synthesis gas may be produced using chemical catalysts or biocatalysts, this latter process is known as fermentation of syngas. The information in the literature is scarce for the integrated gasification of biomass and subsequent fermentation to produce ethanol, making it difficult to see the feasibility of this new technology, in terms of operating conditions. The use of mathematical models and their computer simulation can help this study. Typically, numerous studies involving computer simulations, applied to different biomass gasification, are found in the literature. However, few of them approach the real characterization of process and properties for used biomass, considering only the properties for coal, which ends up generating divergence in the results. Moreover, most of the simulations are grounded on simple models based on proximate-ultimate characteristics, which end up limiting the development of virtual plants, which are based on biomass compositional analysis when focused on the production of ethanol as the final step or as integration process. Thus, the aims of this work are to study the complete gasification process and to carry out a preliminary study of synthesis gas fermentation, through computer simulations, in order to define the best conditions and variables that affect this global process when sugarcane bagasse is used as raw material. The simulations were developed using Aspen Plus ¿ simulator and the results validated with experimental data from literature and data obtained in the laboratories LDPS / LOPCA / BIOEN / FEQ / UNICAMP. For the full simulation of the process, several steps were studied and divided for a better understanding. Mathematical models were developed to predict properties required for the development of thermochemical processes. Simulations based on biomass analysis as proximate-ultimate and compositional were done to define the initial decomposition of biomass, demonstrating the different yields and products that are generated and which are the basis of the initial stage of the gasification. Complete simulations of gasification were carried out to study different types of gasification reactors. The influence of operating conditions at gasification performance was investigated; variables such as temperature, equivalence ratio (ER), steam injection and preheater temperature were evaluated. With the set conditions of gasification was proposed a simulation to represent the fermentation of syngas. It was demonstrated that the synthesis gas composition is changed when increased the ER and steam injection; and different ethanol concentrations are obtained when the input pressure of the synthesis gas is changed / Doutorado / Desenvolvimento de Processos Químicos / Doutora em Engenharia Quimica
13

Evaluation of the new Power & Biomass to Liquid (PBtL) concept for production of biofuels from woody biomass / Utvärdering av det nya Power & Biomass to Liquid (PBtL) konceptet för produktion av biobränslen från träbaserad biomassa

Dahl, Robert January 2021 (has links)
I den här rapporten utvärderas det nya konceptet Power & Biomass to Liquid (PBtL). PBtL är ett alternativ till den tidigare och mer etablerade Biomass to Liquid (BtL) processen. Med PBtL förbättras utbytet av kol jämfört med BtL genom att elektricitet läggs till i processen. Elektriciteten används för att producera H2, som används för att höja H2/CO förhållandet istället för att använda WGS som i vanlig BtL process. Rapporten är en del i ett större PBtL projekt som bedrivits vid Institutt for kjemisk prosessteknologi vid NTNU och på SINTEF. Utvärderingen utfördes genom flera simuleringar av lågtemperaturs Fischer-Tropsch reaktorer i simuleringsprogrammet Aspen Plus. Omvandling och katalytiska reaktorer utvecklades och togs fram i programmet. Produktfördelningen i omvandlingsreaktorn modellerades med ASF distribution theory tillsammans med en metod för sammanslagning av högre kolväten. Fördelningen av paraffiner, olefiner och oxygenater baserades på experimentella resultat från Shafer et al. som studerade en slurryreaktor under liknande förhållanden. Den kinetiska reaktorn modellerades med en variant av ASF fördelningsteori kallad ”consorted vinylene mechanism” från Rytter och Holmen. Reaktorerna adderades till förgasningsprocess, som utvecklats tidigare av PBtL gruppen, I förgasningsprocessen förgasas biomassa till syntesgas, dvs H2 och CO. För att möjliggöra en utvärdering av det efterföljande steget med separering av vax, mellandestillat och lättare kolväten så antogs en väl fungerande separation av Fischer-Tropsch produkterna. En enklare separation av med flash förångning gjordes också, dels för fortsättningen av PBtL processen och för att kunna studera tailgasrecirkulering. Ett mindre bidrag var studier av en torkningsprocess för biomassa innan inloppet till förgasningsprocessen. PBtL konceptet diskuterades även ur ett praktiskt perspektiv.  Resultaten visar att vid driftbetingelser på 210 °C, 25 bar och H2/CO = 1,95 så gav omvandlingsreaktorn en kolselektivitet för CH4 respektive C5+ på 14,77 respektive 75,40 mol% C. Högre temperatur, tryck och H2/CO förhållande i reaktorn resulterar i en högre kolselektivitet mot lägre kolväten. Vid samma driftbetingelser gav den katalysreaktorn en kolselektivitet för CH4 respektive C5+ på 7,612 respektive 86,00 mol% C. Resultaten visar att C8-C16 produktionen var högre än C17+ med avseende på molflöde men lägre beträffande massflöde för katalysreaktorn. Generellt så ökar kolselektiviteten med ökande kolnummer till ett maximum runt 13 för att sedan minska. / In this report, the new Power & Biomass to Liquid (PBtL) concept was evaluated. The PBtL concept is a new alternative to the more well-established Biomass to Liquid (BtL) concept where electricity is added to the process. The main purpose for developing the PBtL is that the BtL process exhibits poor carbon efficiency compared to the PBtL process. The electricity here is used to produce H2 in electrolysis. The report is part of a larger PBtL project pursued for several years at the Department of Chemical Engineering at NTNU and SINTEF. The evaluation was done by simulating different types of low temperature Fischer-Tropsch reactors in simulation software Aspen Plus. A conversion reactor and a kinetic reactor was developed. A conversion reactor based on the result from the kinetic reactor was also developed.  The conversion-based reactor was modeled with the ASF distribution theory which describes the distribution of products formed in Fischer-Tropsch synthesis along with a method of lumping higher hydrocarbons. The distribution between paraffins, olefins and oxygenates was based on experimental data from Shafer et al. with similar operating condition with a Slurry reactor. The kinetic-based reactor was modeled with ASF distribution theory with a consorted vinylene mechanism previously described in Rytter and Holmen. The reactors were added to a process for which the biomass gasification section had previously been developed by the PBtL group. The Fischer-Tropsch products were as well separated in order to evaluate the subsequent step of separation of waxes, middle distillate and lighter hydrocarbons. This enabled the option of recycling of tail gas to the Fischer-Tropsch reactor to be evaluated. A smaller contribution included addition of a biomass dryer prior the biomass gasification section. The PBtL concept is also shortly discussed from a practical point-of-view.  It was found that for the operating condition of 210 °C, 25 bar and H2/CO = 1.95 for the conversion-based reactor yielded a carbon selectivity towards CH4 and C5+ of 14.77 and 75.40 mol C% respectively. For the same operating condition, the kinetic-based reactor yield a carbon selectivity towards CH4 and C5+ of 7.612 and 86.00 mol C% respectively. It could be seen from the conversion-based reactor that elevating temperature, pressure and H2/CO (to a certain extent) results in higher carbon selectivity towards lower hydrocarbons. From the product separation with the kinetic reactor, it was observed that C8-C16 production was higher than the C17+ production in terms of mole flow but lower in terms of mass flow. For both models, carbon selectivity increases with carbon number and peaks around carbon number 13 and then starts to decrease.
14

Enhancing the production of biomethane : A comparison between GoBiGas process and new process of combining anaerobic digestion and biomass gasification

Mehmood, Daheem January 2016 (has links)
In recent years, there is a rapid growing interest in the use of biomethane for the transport sector. A new method of combining anaerobic digestion and biomass gasification is proposed.The feasibility study shows that more biomethane can be produced; resulting in an increase in the revenue compared to individual biogas plants. The GoBiGas project,which is initiated by Göteborg Energi, adopted another method based on gasification, water gas shift and methanation to enable biomethane production from forest residue. The aim of the present study is to investigate the economic viability of the new method when compared with the GoBiGas (Gothenburg Biomass Gasification) process. For this study, a model of GoBiGas process was developed in Aspen Plus to perform the technical analysis, in which the overall efficiency and exergy efficiency were calculated at different moisture contents of biomass. For the economic analysis, the annual revenue was also estimated during the study. The results show that the overall efficiency of the new method is higher than the efficiency of the GoBiGas process and there is more production of biomethane from the new process.
15

Carbon dioxide absorption, desorption, and diffusion in aqueous piperazine and monoethanolamine

Dugas, Ross Edward 02 June 2010 (has links)
This work includes wetted wall column experiments that measure the CO₂ equilibrium partial pressure and liquid film mass transfer coefficient (kg') in 7, 9, 11, and 13 m MEA and 2, 5, 8, and 12 m PZ solutions. A 7 m MEA/2 m PZ blend was also examined. Absorption and desorption experiments were performed at 40, 60, 80, and 100°C over a range of CO₂ loading. Diaphragm diffusion cell experiments were performed with CO₂ loaded MEA and PZ solutions to characterize diffusion behavior. All experimental results have been compared to available literature data and match well. MEA and PZ spreadsheet models were created to explain observed rate behavior using the wetted wall column rate data and available literature data. The resulting liquid film mass transfer coefficient expressions use termolecular (base catalysis) kinetics and activity-based rate expressions. The kg' expressions accurately represent rate behavior over the very wide range of experimental conditions. The models fully explain rate effects with changes in amine concentration, temperature, and CO₂ loading. These models allow for rate behavior to be predicted at any set of conditions as long as the parameters in the kg' expressions can be accurately estimated. An Aspen Plus® RateSep™ model for MEA was created to model CO₂ flux in the wetted wall column. The model accurately calculated CO₂ flux over the wide range of experimental conditions but included a systematic error with MEA concentration. The systematic error resulted from an inability to represent the activity coefficient of MEA properly. Due to this limitation, the RateSep™ model will be most accurate when finetuned to one specific amine concentration. This Aspen Plus® RateSep™ model allows for scale up to industrial conditions to examine absorber or stripper performance. / text
16

Experimental and modelling studies of coal/biomass oxy-fuel combustion in a pilot-scale PF combustor

Jurado Pontes, Nelia January 2014 (has links)
This thesis focuses on enhancing knowledge on co-firing oxy-combustion cycles to boost development of this valuable technology towards the aim of it becoming an integral part of the energy mix. For this goal, the present work has addressed the engineering issues with regards to operating a retrofitted multi-fuel combustor pilot plant, as well as the development of a rate-based simulation model designed using Aspen Plus®. This model can estimate the gas composition and adiabatic flame temperatures achieved in the oxy-combustion process using coal, biomass, and coal-biomass blends. The fuels used for this study have been Daw Mill coal, El Cerrejon coal and cereal co-product. A parametric study has been performed using the pilot-scale 100kWth oxy-combustor at Cranfield University and varying the percentage of recycle flue gas, the type of recycle flue gas (wet or dry), and the excess oxygen supplied to the burner under oxy-firing conditions. Experimental trials using co-firing with air were carried out as well in order to establish the reference cases. From these tests, experimental data on gas composition (including SO3 measurement), temperatures along the rig, heat flux in the radiative zone, ash deposits characterisation (using ESEM/EDX and XRD techniques), carbon in fly ash, and acid dew point in the recycle path (using an electrochemical noise probe), were obtained. It was clearly shown during the three experimental campaigns carried out, that a critical parameter was that of minimising the air ingress into the process as it was shown to change markedly the chemistry inside the oxy-combustor. Finally, part of the experimental data collected (related to gas composition and temperatures) has been used to validate the kinetic simulation model developed in Aspen Plus®. For this validation, a parametric study considering the factor that most affect the oxy-combustion process (the above mentioned excess amount of air ingress) was varied. The model was found to be in a very good agreement with the empirical results regarding the gas composition.
17

Exergy analysis and heat integration of a pulverized coal oxy combustion power plant using ASPEN plus

Khesa, Neo January 2017 (has links)
A dissertation submitted to the faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfillment of the requirements for the degree of Master of Science in Engineering. 21 November 2016 / In this work a comprehensive exergy analysis and heat integration study was carried out on a coal based oxy-combustion power plant simulated using ASPEN plus. This is an extension on the work of Fu and Gundersen (2013). Several of the assumptions made in their work have been relaxed here. Their impact was found to be negligible with the results here matching closely with those in the original work. The thermal efficiency penalty was found to be 9.24% whilst that in the original work was 9.4%. The theoretical minimum efficiency penalty was determined to be 3% whilst that in the original work was 3.4%. Integrating the compression processes and the steam cycle was determined to have the potential to increase net thermal efficiency by 0.679%. This was close to the 0.72% potential reported in the original work for the same action. / MT2017
18

Modeling of an Ethanol - Water- LiBr Ternary System for the Simulation of Bioethanol Purification using Pass-Through Distillation

Smestad, Haley Hayden 28 April 2016 (has links)
Accurate modeling of mixed solvent electrolyte systems is difficult and is not readily available in property modeling software such as Aspen Plus. Support for modeling these systems requires the knowledge and input of parameters specific to the compounds in question. The need for these parameters is particularly relevant in simulating new designs based upon recent developments in a concept known as pass-through distillation (PTD). In support of a specific application of PTD, this work determines and validates with existing experimental data, accurate user-parameters for the eNRTL property model in the ternary system of ethanol, water, and lithium bromide. Furthermore, this work creates the foundation for simulating this new PTD process by modeling the removal of bioethanol from a fermentation broth using low temperature evaporation in conjunction with absorption and stripping units to omit the need of a condenser requiring refrigeration. This will enable future investigations into the applications of PTD as well as provide a foundation for modeling the ternary system of ethanol, water and lithium bromide.
19

GASIFICATION-BASED BIOREFINERY FOR MECHANICAL PULP MILLS

He, Jie January 2012 (has links)
The modern concept of "biorefinery" is dominantly based on chemical pulp mills to create more value than cellulose pulp fibres, and energy from the dissolved lignins and hemicelluloses. This concept is characterized by the conversion of biomass into various biobased products. It includes thermochemical processes such as gasification and fast pyrolysis. In mechanical pulp mills, the feedstock available to the gasification-based biorefinery is significant, including logging residues, bark, fibre material rejects, biosludges and other available fuels such as peat, recycled wood, and paper products. This work is to study co-production of bio-automotive fuels, biopower, and steam via gasification in the context of the mechanical pulp industry.   Biomass gasification with steam in a dual-fluidized bed gasifier (DFBG) was simulated with ASPEN Plus. From the model, the yield and composition of the syngas and the contents of tar and char can be calculated. The model has been evaluated against the experimental results measured on a 150 KWth Mid Sweden University (MIUN) DFBG. The model predicts that the content of char transferred from the gasifier to the combustor decreases from 22.5 wt.% of the dry and ash-free biomass at gasification temperature 750 ℃ to 11.5 wt.% at 950 ℃, but is insensitive to the mass ratio of steam to biomass (S/B). The H2 concentration is higher than that of CO under normal DFBG operating conditions, but they will change positions when the gasification temperature is too high above about 950 ℃, or the S/B ratio is too far below about 0.15. The biomass moisture content is a key parameter for a DFBG to be operated and maintained at a high gasification temperature. The model suggests that it is difficult to keep the gasification temperature above 850 ℃ when the biomass moisture content is higher than 15.0 wt.%. Thus, a certain amount of biomass needs to be added in the combustor to provide sufficient heat for biomass devolatilization and steam reforming. Tar content in the syngas can also be predicted from the model, which shows a decreasing trend of the tar with the gasification temperature and the S/B ratio. The tar content in the syngas decreases significantly with gasification residence time which is a key parameter.   Mechanical pulping processes, as Thermomechanical pulp (TMP), Groundwood (SGW and PGW), and Chemithermomechanical pulp (CTMP) processes have very high wood-to-pulp yields. Producing pulp products by means of these processes is a prerequisite for the production of printing paper and paperboard products due especially to their important functional properties such as printability and stiffness. However, mechanical pulping processes consume a great amount of electricity, which may account for up to 40% of the total pulp production cost. In mechanical pulping mills, wood (biomass) residues are commonly utilized for electricity production through an associated combined heat and power (CHP) plant. This techno-economic evaluation deals with the possibility of utilizing a biomass integrated gasification combined cycle (BIGCC) plant in place of the CHP plant. Integration of a BIGCC plant into a mechanical pulp production line might greatly improve the overall energy efficiency and cost-effectiveness, especially when the flow of biomass (such as branches and tree tops) from the forest is increased. When the fibre material that negatively affects pulp properties is utilized as a bioenergy resource, the overall efficiency of the system is further improved. A TMP+BIGCC mathematic model is developed based on ASPEN Plus. By means of this model, three cases are studied:   1) adding more forest biomass logging residues in the gasifier, 2) adding a reject fraction of low quality pulp fibers to the gasifier, and 3) decreasing the TMP-specific electricity consumption (SEC) by up to 50%.   For the TMP+BIGCC mill, the energy supply and consumption are analyzed in comparison with a TMP+CHP mill. The production profit and the internal rate of return (IRR) are calculated. The results quantify the economic benefit from the TMP+BIGCC mill.   Bio-ethanol has received considerable attention as a basic chemical and fuel additive. It is currently produced from sugar/starch materials, but can also be produced from lignocellulosic biomass via a hydrolysis--fermentation or thermo-chemical route. In terms of the thermo-chemical route, a few pilot plants ranging from 0.3 to 67 MW have been built and operated for alcohols synthesis. However, commercial success has not been achieved. In order to realize cost-competitive commercial ethanol production from lignocellulosic biomass through a thermo-chemical pathway, a techno-economic analysis needs to be done.   In this work, a thermo-chemical process is designed, simulated, and optimized mainly with ASPEN Plus. The techno-economic assessment is made in terms of ethanol yield, synthesis selectivity, carbon and CO conversion efficiencies, and ethanol production cost.   Calculated results show that major contributions to the production cost are from biomass feedstock and syngas cleaning. A biomass-to-ethanol plant should be built at around 200 MW. Cost-competitive ethanol production can be realized with efficient equipments, optimized operation, cost-effective syngas cleaning technology, inexpensive raw material with low pretreatment cost, high-performance catalysts, off-gas and methanol recycling, optimal systematic configuration and heat integration, and a high-value byproduct.
20

Process analysis and aspen plus simulation of nuclear-based hydrogen production with a copper-chlorine cycle

Chukwu, Cletus 01 August 2008 (has links)
Thermochemical processes for hydrogen production driven by nuclear energy are promising alternatives to existing technologies for large-scale commercial production of hydrogen, without dependence on fossil fuels. In the Copper-Chlorine (Cu-Cl) cycle, water is decomposed in a sequence of intermediate processes with a net input of water and heat, while hydrogen and oxygen gases are generated as the products. The Super Critical Water-cooled Reactor (SCWR) has been identified as a promising source of heat for these processes. In this thesis, the process analysis and simulation models are developed using the Aspen PlusTM chemical process simulation package, based on experimental work conducted at the Argonne National Laboratory (ANL) and Atomic Energy of Canada Limited (AECL). A successful simulation is performed with an Electrolyte Non Random Two Liquid (ElecNRTL) model of Aspen Plus. The efficiency of the cycle based on three and four step process routes is examined in this thesis. The thermal efficiency of the four step thermochemical process is calculated as 45%, while the three step hybrid thermochemical cycle is 42%, based on the lower heating value (LHV) of hydrogen. Sensitivity analyses are performed to study the effects of various operating parameters on the efficiency, yield, and thermodynamic properties. Possible efficiency improvements are discussed. The results will assist the development of a lab-scale cycle which is currently being conducted at the University of Ontario Institute of Technology (UOIT), in collaboration with its partners. / UOIT

Page generated in 0.0362 seconds