• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 738
  • 410
  • 74
  • 66
  • 53
  • 42
  • 26
  • 26
  • 19
  • 7
  • 5
  • 5
  • 4
  • 3
  • 2
  • Tagged with
  • 1797
  • 297
  • 265
  • 254
  • 218
  • 201
  • 191
  • 167
  • 135
  • 131
  • 99
  • 97
  • 95
  • 95
  • 94
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Response of Human Hematopoietic Cells to DNA Double-strand Breaks

Trottier, Magan 16 February 2010 (has links)
Maintenance of hematopoiesis depends upon rare hematopoietic stem cells (HSCs), which can persist over an organism’s lifetime. It is conceivable that they must maintain a high degree of genetic stability; otherwise recurring exposure to genotoxins and accumulation of genetic changes could result in genomic instability and malignancy or cell death. We have focused on the response of HSCs and primitive hematopoietic cells to highly toxic DNA double-strand breaks (DSBs). Using assays to detect break rejoining and kinetics of early DSB response foci, we determined that non-cycling human HSC-containing cells display delayed break rejoining kinetics and persistent γH2AX and 53BP1 foci compared to cycling counterparts, more differentiated hematopoietic cells and human primary fibroblasts. In contrast, when stimulated to cycle, these HSC-containing cells are quite efficient at repairing breaks and resolving foci. These data suggest that the DNA damage response may be unusually prolonged in non-cycling primitive hematopoietic cells.
612

The Circadian Regulation of Feeding in Adult Drosophila melanogaster

Shekhar, Shreya 11 January 2011 (has links)
In nature, all organisms face the daily challenges created by a fluctuating environment. Circadian clocks synchronize behaviour and physiology allowing an organism to adapt to and predict daily changes to environmental conditions. In the fruit fly, Drosophila melanogaster, circadian clocks reside in a set of ~150 neurons in the brain, collectively referred to as the central clock, and in the cells of many peripheral tissues. The central clock regulates daily behavioural rhythms, whereas peripheral clocks are thought to regulate the local metabolic activities of the cells in which they reside. In this thesis, I demonstrate that a peripheral clock resides in the abdominal fat body, a tissue analogous to the mammalian liver and adipocytes. Moreover, I show that flies display a temporal feeding pattern that is partly regulated by a peripheral clock. I propose that the central clock and peripheral clocks coordinate to regulate the timing of fly feeding behaviour.
613

Heterocyclic Diamidines Induce Sequence Dependent Topological Changes in DNA; A Study Using Gel Electrophoresis

Tevis, Denise Susanne 17 April 2009 (has links)
Diamidines are a class of compounds that target the minor groove of DNA and have antiparasitic and antimicrobial properties. Their mechanism of action has not been fully elucidated, but may include changes in DNA topology. In this study we have investigated such changes using methods of gel electrophoresis including ligation ladders and cyclization assays. We found that topology changes were sequence dependent. Compounds typically caused non-anomalously migrating ATATA sequences to migrate as if they were bent, while A5 sequences that normally migrated anomalously became less so in the presence of certain diamidines. Select compounds induced changes in cyclization efficiency that were also sequence dependent; DB75 significantly abolished cyclization in A5 containing sequences but enhanced it in sequences containing ATATA sites.
614

Oxidative stress : natural history and modulation In surgery and trauma patients

Obayan, Adebola Okunola Emeka 31 August 2004
Oxidative stress has been associated with many disease conditions in adults and neonates based on clinical and post mortem studies. Trauma is the commonest cause of oxidative stress. However a gap in knowledge of the natural history of oxidative stress in humans was identified as most studies have been post mortem or in animals. <p>The aim of this research is to understand treat and oxidative stress in trauma and surgical patients. The study involved three components including: the development and evaluation of the novel oxistress assay; study of clinical trauma and oxidative stress; and clinical trial of alanyl-glutamine supplementation following major surgery. The novel oxistress assay was used on urine samples in the normal population to determine reference values and subsequently on hospital patients to determine sensitivity and specificity. The study of clinical trauma and oxidative stress evaluated plasma antioxidants (FRAP assay), red cell glutathione (Asensis method), plasma and urine protein carbonyl (Levines method) and total oxidants in plasma and urine (oxistress assay) over 7 day period following trauma. The clinical trial was a double blind study of 69 major surgery patients evaluating biochemical and clinical parameters over 7 day period in comparison with pre-operative status. <p>The novel oxistress assay proves to be a sensitive and accurate bedside diagnostic tool for oxidative stress. It can also be used in the laboratory setting. Oxidative stress is associated with increased trauma severity resulting in antioxidant depletion, strong oxidant production and protein degradation. The presence of pre-morbid medical factors also increased oxidative stress in trauma patients. Oral alanyl-glutamine supplementation (0.3 g/kg) increased plasma glutamine and antioxidant levels while decreasing urine oxidant levels. It significantly reduced hospital stay in non-cancer and higher disease complexity patients. The intervention also reduced the resource intensity weighting (RIW) score. <p>Oxidative stress is a clinical problem in surgery and trauma patients that can now be easily diagnosed at the bedside using the novel oxistress assay. Treatment with alanyl-glutamine is effective in reducing oxidative stress and improving clinical outcome. It is highly recommended probably at a higher dose in order to achieve optimal results.
615

Specific motifs responsible for protein-protein interaction between cannabinoid CB1 and dopamine D2 receptors

Zhang, Yun 07 November 2006
Studying protein-protein interactions has been vital for understanding how proteins function within the cell, how biological processes are strictly regulated by these interactions, and what molecular mechanisms underlie cellular functions and diseases. Recent biochemical and biophysical studies have provided evidence supporting that G protein-coupled receptors (GPCRs) can and do interact with one another to form dimers or larger oligomeric complexes, which may determine the structure and function of GPCRs, including receptor trafficking, scaffolding and signaling. This may help to understand the physiological roles of GPCRs and mechanisms underlying certain disease pathologies and to provide an alternative approach for drug intervention.<p>Cannabinoid CB1 and dopamine D2 receptors are the most common GPCRs in the brain and exert a mutual regulation in brain functions involved in learning, memory and drug addiction. There is structural and functional evidence supporting the idea that CB1 and D2 receptors physically interact with each other in hippocampal and striatal neurons to modulate their functions. Direct evidence supporting a physical interaction between the CB1 and D2 receptors was obtained from cultured HEK293 cells stably coexpressed with both receptors.<p> This research project was designed to critically test the hypothesis that a specific protein sequence (i.e. motif) in the D2 receptor is responsible for in vitro protein-protein interactions between the CB1 and D2 receptors. To reach this goal, fusion proteins containing various domains and motifs of the CB1 and D2 receptors were prepared and then used first to determine the domains of the CB1 and D2 receptors responsible for in vitro protein-protein interactions between CB1 and D2 receptors, and then to identify the specific motifs in the D2 receptor responsible for in vitro CB1 coupling with the D2 receptors. The major method used in this study is in vitro pull-down assay, which uses a purified and tagged bait protein to generate a specific affinity support that is able to bind and purify a prey protein from a lysate sample. The present study provides the first evidence that CB1 intracellular C-terminal (CB1-CT) and D2 intracellular loop 3 (D2-IL3) can directly interact with each other, and that the specific motifs D2-IL3(Ⅳ1) and D2-IL3(Ⅳ3) in the D2 receptor are likely responsible for their in vitro coupling with the CB1 receptors. <p>The results of the present study are invaluable for future research exploring in vivo protein-protein interaction between the CB1 and D2 receptors in the rat striatum by co-immunoprecipitation. Specifically, future studies will determine whether the identified specific motifs D2-IL3(Ⅳ1) and D2-IL3(Ⅳ3) in the D2 receptor are indeed critical for their in vivo coupling with the CB1 receptors.
616

Application of PI-deconvolution to the screening of protein ligand combinatorial libraries using the yeast-two-hybrid assay

Aparicio de Navaraez, Alberto 28 November 2008
Reagents that bind proteins are applicable in biology for detection of molecules, perturbation of signaling pathways and development of small-molecule pharmaceuticals. Protein ligands interact with proteins, inhibiting or altering their function. They are isolated from combinatorial libraries to interact with a specific target, using selection techniques such as phage display or yeast-two-hybrid assay. For the latter, one inconvenience is the detection of false positives, which can be solved by screening pools containing the samples to be tested, instead of individual samples. Samples are distributed in the pools following a pooling design. The PI-deconvolution pooling design was developed to screen cDNA libraries using the yeast-two-hybrid assay, which are smaller in size than protein ligand combinatorial libraries. Modifications to the PI-deconvolution screening technique were developed to adapt it to the screening of protein ligand combinatorial libraries using the yeast-two-hybrid assay. Every spot of the array containing the combinatorial library was randomly pooled. However, the yeast-two-hybrid assay loses sensitivity when strains are pooled. As PI-deconvolution requires detecting every interaction, we determined the optimal amount of library members that can be pooled in a spot, and the optimal number of replicates to ensure the detection of an interaction.<p> The yeast-two-hybrid assay was used to perform a screening of a combinatorial library with seven domains of BCR-ABL, which were pooled according to PI-deconvolution. BCR-ABL is a chimeric protein with unregulated kinase activity that is responsible for chronic myelogenous leukemia. The scaffold used in the combinatorial library was an engineered intein that forms lariat peptides. After a screening of this library was performed, positive interactions were detected in 775 spots of the arrays that contained 1432 positive hits. Only 53 spots were deconvoluted. The coding sequences of the lariat peptides were determined for 23 lariat peptides interacted with the GEF domain of BCR, and for ABL, two with the FABD domain, one with the SH1 domain, and one with the SH3 domain. Finally, a &beta;-galactosidase assay was performed to assess the affinity of the lariat peptides for their target.<p> The isolated lariat peptides are potential inhibitors of BCR-ABL that can have therapeutic potential. This study will improve other screenings of combinatorial libraries with the yeast-two-hybrid assay.
617

In Vitro Function of Frozen-Thawed Bottlenose Dolphin (Tursiops truncatus) Spermatozoa Undergoing Sorting and Recyopreservation

Montano Pedroso, Gisele 1981- 14 March 2013 (has links)
Artificial insemination (AI) with sex-sorted bottlenose dolphin spermatozoa provides female calves for obtaining more cohesive social groups and optimum genetic management of captive populations. However, distance of animals to the sorting facility represents a limit to the procedure. Although one bottlenose dolphin calf has been born using spermatozoa from frozen-thawed, sorted and recryopreserved spermatozoa, critical evaluation of the steps involved in this process is required to maximize its efficiency for future AIs and expansion of the technology to other species. Two experiments were designed to determine the efficiency of the sorting process and the quality of frozen-thawed bottlenose dolphin spermatozoa during sorting and recryopreservation. In experiment 1, the effect of two washing media (with and without 4 percent egg yolk, v/v) following density gradient centrifugation (DGC) on sperm recovery rate and in vitro characteristics of cryopreserved spermatozoa was examined. In experiment 2, cryopreserved semen was used to compare the effects of two recryopreservation methods (conventional straw freezing and directional freezing) on in vitro sperm characteristics of control (non-sorted) and sorted spermatozoa. Egg yolk supplementation of the washing medium in experiment 1 did not influence (P > 0.05) the sperm recovery rate, however, sperm motility parameters and viability were improved (P < 0.05). For Experiment 2, motility parameters and viability were influenced by stage of sex-sorting process, sperm type (non-sorted and sorted) and freezing method (P < 0.05). After recryopreservation, sorted spermatozoa frozen with the directional freezing method maintained higher (P < 0.05) motility parameters over the 24 h incubation period compared to spermatozoa frozen using straws. Quality of sperm DNA of nonsorted spermatozoa, as assessed by the SCSA, remained unchanged throughout the process. However, a possible interaction between Hoechst 33342 and acridine orange was observed in sorted samples. After recryopreservation, viability of sorted spermatozoa was higher (P < 0.05) than that of non-sorted spermatozoa across all time points. The percentages of viable spermatozoa determined by light (eosin-nigrosin) and fluorescence microscopy (propidium iodide) techniques were correlated (R^2=0.79, P < 0.001). Collective results indicate that bottlenose dolphin spermatozoa undergoing cryopreservation, sorting and recryopreservation are of adequate quality for use in AI.
618

Toward Multiplexed Nucleic Acid Assays and Biosensors Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer (FRET)

Algar, Walter Russell 23 February 2011 (has links)
Research toward a multiplexed nucleic acid biosensor that uses quantum dots (QDs) as donors in a fluorescence resonance energy transfer (FRET) assay is described. Optical fibers were modified with mixed films composed of different colours of QDs and different oligonucleotide probes that served as scaffolds for the hybridization of the corresponding target nucleic acid sequences. Fluorescent dyes that were suitable as acceptors for each QD donor were associated with hybridization and provided an analytical signal through FRET-sensitized emission. Different detection channels were achieved through the combination of different donors and acceptors: green emitting QDs with Cyanine 3 or Rhodamine Red-X; and red emitting QDs with Alexa Fluor 647. A detection channel that used the direct excitation of Pacific Blue complemented the FRET pairs. One-plex, two-plex, three-plex and four-plex hybridization assays were demonstrated. A sandwich assay format was adopted to avoid target labeling. Detection limits were 1-10 nM (1-12 pmol) and analysis times were 1-4 h. Single nucleotide polymorphisms were discriminated in multiplexed assays, and the potential for reusability was also demonstrated. Non-selective interactions between QDs and oligonucleotides were characterized, and routes toward the optimization of the QD-FRET hybridization assays were identified. A basic model for multiple FRET pathways in a mixed film was also developed. In addition to the advantages of solid-phase assays, the combination of QDs and FRET was advantageous because it permitted multiplexed detection using a single excitation source and a single substrate, in the ensemble, and via ratiometric signals. Spatial registration or sorting methods, imaging or spatial scanning, and single molecule spectroscopy were not required. The research in this thesis is expected to enable new chip-based biosensors in the future, and is an original contribution to both bioanalytical spectroscopy and the bioanalytical applications of nanomaterials.
619

Antibody based plasma protein profiling

Qundos, Ulrika January 2013 (has links)
This thesis is about protein profiling in serum and plasma using antibody suspension bead arrays for the analysis of biobanked samples and in the context of prostate cancer biomarker discovery. The influence of sample preparation methods on antibody based protein profiles were investigated (Papers I-III) and a prostate cancer candidate biomarker identified and verified (Papers III-V). Furthermore, a perspective on the research area affinity proteomics and its’ employment in biomarker discovery, for improved understanding and potentially improved disease diagnosis, is provided. Paper I presents the results of a comparative plasma and serum protein profiling study, with a targeted biomarker discovery approach in the context of metabolic syndrome. The study yielded a higher number of significant findings and a low experimental variability in blood samples prepared as plasma. Paper II investigated the effects from post-centrifugation delays at different temperatures prior sample storage of serum and plasma samples. Minor effects were found on the detected levels of more than 300 predicted or known plasma proteins. In Paper III, the detectability of proteins in plasma was explored by exposing samples to different pre-analytical heat treatments, prior target capture. Heat induced epitope retrieval was observed for approximately half of the targeted proteins, and resulted in the discovery of different candidate markers for prostate cancer. Several antibodies towards the prostate cancer candidate biomarker CNDP1 were generated, epitope mapped and evaluated in a bead based sandwich immunoassay, as presented in Papers IV and V. Furthermore, the developed sandwich immunoassay targeting multiple distinct CNDP1 epitopes in more than 1000 samples, confirmed the association of CNDP1 levels to aggres- sive prostate cancer and more specifically to prostate cancer patients with regional lymph node metastasis (Paper V). As an outcome of the present investigations and in parallel to studies within the Biobank profiling research group, valuable lessons from study design and multiplex antibody analysis of plasma within biomarker discovery to experimental, technical and biological verifications have been collected. / <p>QC 20130821</p>
620

Platelet Adhesion to Proteins in Microplates : Applications in Experimental and Clinical Research

Eriksson, Andreas January 2008 (has links)
Platelets are crucial for prevention of blood loss after vessel injury. Platelet adhesion to disrupted vessel walls is mediated by receptors such as the GPIb-IX-V complex that binds von Willebrand factor and the collagen-binding integrin α2β1. Also cross-linking of platelets, mediated by αIIbβ3 that binds to fibrinogen, results in platelet aggregation that further contributes to hemostasis. Platelets are also important pathophysiologically because of their role in thrombus formation following atherosclerotic plaque rupture. Pharmacological treatments aimed to prevent such events include use of platelet inhibitors such as acetylsalicylic acid (ASA) and clopidogrel. Despite the presence of several different platelet function assays, no one has so far been considered useful for clinical evaluation of the effect of anti-platelet treatment. The aim of this thesis was to evaluate possible applications in experimental as well as in clinical research for a platelet adhesion assay performed during static conditions. In principle, platelets in plasma are allowed to attach to protein coated microplates. Adhered platelets are then detected by induction of an enzymatic reaction followed by spectrophotometric measurements of the developed product. Our results show that the platelet adhesion assay is able to detect experimentally induced activation as well as inhibition of platelets. The assay also seems useful for investigation of synergistically induced platelet activation, especially when the coated surface consists of albumin. This is exemplified by the combination of lysophosphatidic acid and adrenaline, which induced a synergistically increased platelet adhesion to albumin that was dependent on αIIbβ3-receptors and on the secretion of ADP. Furthermore, secretion of ADP as well as TXA2 seems to contribute to several adhesive reactions investigated with this assay. The dependence on secretion, together with results showing that adhesion to collagen and fibrinogen is dependent on α2β1- and αIIbβ3-receptors respectively, indicate that the adhesive interactions occurring in the assay is in accordance with the general knowledge about platelet function. Regarding clinical applications, we found that platelet adhesion was increased for patients with essential thrombocythemia (ET) compared to controls. This is in line with the in vivo function of ET-platelets since a common complication for ET-patients is thrombosis. Furthermore, the assay was able to detect effects of treatment with clopidogrel in patients with unstable angina. To some extent it also measured the effects of ASA-treatment. In conclusion, our results suggest that the assay is suitable for experimental research and that further studies should be performed aimed at developing the assay into a clinically useful device.

Page generated in 0.0238 seconds