• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • Tagged with
  • 20
  • 20
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Meteoroid damage to a large space telescope mirror

Hamilton, Joseph Barry January 1976 (has links)
Thesis. 1976. B.S.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / Microfiche copy available in Archives and Engineering. / Includes bibliographical references. / by Joseph B. Hamilton. / B.S.
12

Computerised electro-mechanical control of the UWS astronomical telescope and the integration of a multi-tasking television system

Bird, Frank William, University of Western Sydney, College of Health and Science, School of Engineering January 2005 (has links)
Obtaining a very high level of precision and sophistication in automated computer control is now available inexpensively from a variety of hardware and software sources. Applying this automated technology to an astronomical telescope broadens the scope of applications of the instrument, particularly in areas such as photo electrics, CCD imaging and remote control. The ultimate design goal of the UWS telescope was that of full roboticism, giving access of the facility to off campus clients both in Australia and overseas. The first phase towards full robotic control is automation of the required optical and mechanical parameters, providing precision targeting and object tracking. This thesis describes the mechanical aspects of the UWS telescope and the procedures and equipment involved in its automation, including the drive system, electro mechanical design and associated computer hardware and software. Sample performance test data shows that using a high percentage of inexpensive proprietary robotics components, a very sophisticated and accurate measuring device can be produced. / Master of Science (Hons.)
13

Redevelopment of the Hong Kong Observatory

江育明, Kong, Yuk-ming, Simon. January 1994 (has links)
published_or_final_version / Architecture / Master / Master of Architecture
14

Designing and implementing a new pulsar timer for the Hartebeesthoek Radio Astronomy Observatory

Youthed, Andrew David January 2008 (has links)
This thesis outlines the design and implementation of a single channel, dual polarization pulsar timing instrument for the Hartebeesthoek Radio Astronomy Observatory (HartRAO). The new timer is designed to be an improved, temporary replacement for the existing device which has been in operation for over 20 years. The existing device is no longer reliable and is di±cult to maintain. The new pulsar timer is designed to provide improved functional- ity, higher sampling speed, greater pulse resolution, more °exibility and easier maintenance over the existing device. The new device is also designed to keeping changes to the observation system to a minimum until a full de-dispersion timer can be implemented at theobservatory. The design makes use of an 8-bit Reduced Instruction Set Computer (RISC) micro-processor with external Random Access Memory (RAM). The instrument includes an IEEE-488 subsystem for interfacing the pulsar timer to the observation computer system. The microcontroller software is written in assembler code to ensure optimal loop execution speed and deterministic code execution for the system. The design path is discussed and problems encountered during the design process are highlighted. Final testing of the new instrument indicates an improvement in the sam- pling rate of 13.6 times and a significant reduction in 60Hz interference over the existing instrument.
15

Temperature dependence of the HartRAO pointing model

Copley, Charles Judd January 2008 (has links)
This thesis investigates control aspects of the Hartebeeshoek Radio Astronomy Observatory (HartRAO) antenna. The installation of a new 22 GHz receiver has required the pointing accuracy to be improved to less than 4 mdeg. The effect of thermal conditions on the the HartRAO antenna pointing offset is investigated using a variety of modelling techniques including simple geometric modelling, neural networks and Principal Component Analysis (PCA). Convincing results were obtained for the Declination pointing offset, where applying certain model predictions to observations resulted in an improvement in Declination pointing offset from 5.5 mdeg to 3.2 mdeg (≈50%). The Right Ascension pointing model was considerably less convincing with an improvement of approximately from 5.5 mdeg to 4.5 mdeg (≈20%) in the Right Ascension pointing offset. The Declination pointing offset can be modelled sufficiently well to reduce the pointing offset to less than 4 mdeg, however further investigation of the underlying causes is required for the Right Ascension pointing offset.
16

Design of a flexure mount for optics in dynamic and cryogenic environments

Pollard, Lloyd Wayne, 1936- January 1988 (has links)
The design of the flexure mount recently submitted to NASA Ames for the structural support of the primary mirror of the Space Infrared Telescope Facility (SIRTF) is presented. The flexure system must passively accommodate the differential thermal contraction between the glass mirror and the aluminum structure of the telescope during cryogenic cooldown. Further, it must support the one meter diameter, 116 kilogram (258 pound) primary mirror during a severe launch to orbit. Procedures used to establish the required radial compliance using computer programs NASTRAN and FRINGE are discussed. The parametric design program developed to study early concepts is presented. Methods of combining modal responses resulting from a displacement response spectrum analysis are discussed, and a combination scheme called MRSS, Modified Root of Sum of Squares, is presented. Modal combination schemes using MRSS, SRSS, and ABS are compared to the results of a Modal Frequency Response analysis.
17

Advanced test mass suspensions and electrostatic control for AIGO

Lee, Benjamin H January 2007 (has links)
This thesis presents the research done towards the development of the final mirror suspension stage for the high power test facility at AIGO, Western Australia. One of the goals of the facility is to test advanced suspension methods that may be useful in future gravitational wave detectors. An in depth study of current mirror suspension techniques is presented and areas of possible improvement are highlighted. The extension of an existing suspension modelling toolkit written in Mathematica is also presented, where added functions allow one to include the violin modes of a suspension into their analysis. Through this tool, new suspension geometries boasting a lower number of violin modes with lower Q factors where developed. The orthogonal ribbon suspension and the thin tube suspension boast a lower number of lower Q violin modes compared to typical ribbon suspensions. For the latter, a reduction in the number of violin modes below 5kHz down to 5 and peak thermal noise amplitude by approximately 30dB is predicted. Presented also is the affect that such suspension geometries have on pendulum mode dilution factor and overall suspension thermal noise. It is seen that the violin mode improvement comes at a cost of a small increase in thermal noise above approximately 50Hz. A theoretical analysis of the AIGO cavity locking control scheme is also given. Issues of sensor noise and dynamic range are considered to produce a possible hierarchical locking method that would be compatible with advanced detectors. The resulting actuator force range requirements for AIGO at each actuation location on the vibration isolation system are given. Requirements of local controls before achieving cavity lock are also discussed. Finally, the suspension of a dummy sapphire mirror using removable modular niobium ribbons is presented. The design and performance of an electrostatic actuator and sensor for suspended mirror control is given. Initial experimental results of positioning and control of the final stage suspension through a digital interface is also included.
18

An F/2 Focal Reducer For The 60-Inch U.S. Naval Observatory Telescope

Meinel, Aden B., Wilkerson, Gary W. 28 February 1968 (has links)
QC 351 A7 no. 07 / The Meinel Reducing Camera for the U. S. Naval Observatory's 60-inch telescope, Flagstaff, Arizona, comprises an f /10 collimator designed by Meinel and Wilkerson, and a Leica 50-mm f/2 Summicron camera lens. The collimator consists of a thick, 5-inch field lens located close to the focal plane of the telescope, plus four additional elements extending toward the camera. The collimator has an efl of 10 inches, yielding a 1-inch exit pupil that coincides with the camera's entrance pupil, 1.558 inches beyond the final surface of the collimator. There is room between the facing lenses of the collimator and camera to place filters and a grating. The collimated light here is the best possible situation for interference filters. Problems of the collimator design work included astigmatism due to the stop's being so far outside the collimator, and field curvature. Two computer programs were used in development of the collimator design. Initial work, begun in 1964, was with the University of Rochester's ORDEALS program (this was the first time the authors had used such a program) and was continued through July, 1965. Development subsequently was continued and completed on the Los Alamos Scientific Laboratory's program, LASL. The final design, completed January 24, 1966, was evaluated with ORDEALS. This project gave a good opportunity to compare ORDEALS, an "aberration" program, with LASL, a "ray deviation" program. It was felt that LASL was the superior program in this case, and some experimental runs beginning with flat slabs of glass indicated that it could have been used for the entire development of the collimator. Calculated optical performance of the design indicated that the reducing camera should be "seeing limited" for most work. Some astigmatism was apparent, but the amount did not turn out to be harmful in actual astronomical use. After the final design was arrived at, minor changes were made to accommodate actual glass indices of the final melt, and later to accommodate slight changes of radii and thicknesses of the elements as fabricated. An additional small change in spacing between two of the elements was made at the observatory after the reducing camera had been in use for a short time. The fabricated camera is working according to expectations. Some photographs are included in the report to illustrate its performance and utility.
19

SPECIFICATIONS FOR THE CASSEGRAIN INSTRUMENTS INCLUDING THE CASSEGRAIN OBSERVING PLATFORM, STEWARD OBSERVATORY 90-INCH TELESCOPE

Bok, B. J., Fitch, W. S., Hilliard, R. L., Meinel, Aden B., Taylor, D. J., White, R. E. 02 1900 (has links)
QC 351 A7 no. 16 / This document has been prepared to form the basis for the operational specifications for the Cassegrain instrumentation for the 90-inch telescope of the Steward Observatory. The publication of this document is for the purpose of providing guidance to other astronomical groups who may have use for the considerations recorded herein.
20

High performance vibration isolation techniques for the AIGO gravitational wave detector

Chin, Eu-Jeen January 2007 (has links)
[Truncated abstract] Interferometric gravitational wave detectors are being built around the world with continually improving measurement sensitivities. Noise levels from sources that are intrinsic to these detectors must be reduced to a level below the gravita- tional wave signal. Seismic noise in the low frequency range, which is within the gravitational wave detection bandwidth, is a concern for earth-based detectors. This thesis presents research and development of a high performance vibration isolation system that is designed to attenuate seismic noise. The final design will be used as part of a fully working interferometer at the Australian International Gravitational Observatory (AIGO). Pendulums and springs are conventionally used for the horizontal and vertical vibration isolation components respectively. A complete system comprises of a cascade of these components, each stage dramatically improving the level of isola- tion. The residual motion at the test mass level is thus reduced but is dominated by the normal mode resonances of the chain. A simple and effective method to reduce residual motion further is to add ultra-low frequency pre-isolation stages which suspend the chain. The Roberts Linkage is a relatively new and simple geometrical structure that is implemented in the pre-isolation stages. Here we present experimental results of improving isolation based on mathematical mod- elling. The attenuation of seismic noise in the vertical direction is almost as important as that in the horizontal direction, due to cross-coupling between the two planes. To help improve the vertical performance a lightweight Euler spring that stores no static energy was implemented into the AIGO suspension system. ... Theoretical and experimental results are presented and discussed. Currently the AIGO laboratory consists of two 80 m length arms. They are aligned along the east and south directions. One of AIGO's top priorities is the installation of two complete vibration isolators in the east arm to form a Fabry-Perot cavity. Assembling two suspension systems will enable more accurate performance measurements of the tuned isolators. This would significantly reduce the measurement noise floor as well as eliminate the seismic noise spectrum due to referencing with the ground motion. The processes involved in preparing such a task is presented, including clean room preparation, tuning of each isolator stage, and local control schematics and methods. The status of the AIGO site is also presented.

Page generated in 0.0204 seconds