• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 10
  • 9
  • 7
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 93
  • 93
  • 22
  • 18
  • 17
  • 15
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Nouveaux mécanismes de protection des cardiomyocytes contre les lésions d'ischémie / reperfusion

Ivanes, Fabrice 30 September 2013 (has links) (PDF)
Les maladies cardiovasculaires constituent un problème de santé publique. Les pré et postconditionnement ischémiques mais aussi pharmacologiques constituent autant d'avancées qui permettront l'amélioration de la prise en charge des malades en situation d'ischémie/reperfusion myocardique. Néanmoins, la morbi-mortalité des maladies cardiovasculaires reste importante et nécessite le développement de nouvelles techniques. Les premiers résultats de la thérapie cellulaire myocardique ont été décevants, et s'il est désormais établi que l'on ne peut régénérer le myocarde, les effets bénéfiques observés, notamment avec les cellules souches mésenchymateuses semblent en rapport avec un effet paracrine qui passe par l'activation de la voie de signalisation PI3kinase/Akt sur un mécanisme comparable à celui du postconditionnement ischémique. Les médiateurs de cet effet sont vraisemblablement des facteurs de croissance comme le VEGF ou l'IGF-1 même si un effet individuel direct de l'une ou l'autre de ces molécules n'a pu être mis en évidence. La modulation de l'activité de l'ATP synthase mitochondriale est également une cible thérapeutique prometteuse. Cette enzyme inverse son activité et hydrolyse l'ATP durant l'ischémie, conduisant à dépléter le pool d'ATP intracellulaire et accélérer la survenue de la mort cellulaire. De nouvelles molécules ayant un effet similaire à l'IF1 permettent de bloquer cette inversion d'activité de l'ATP synthase, de préserver l'ATP et donc d'améliorer la survie cellulaire par un effet de type préconditionnement ischémique. Ces 2 techniques, très différentes mais non antinomiques, pourraient faire partie de l'arsenal thérapeutique dans les années à venir
72

Studium poruch cytochrom c oxidasy a ATP synthasy na biochemické a molekulární úrovni / Biochemical and molecular studies of cytochrome c oxidase and ATP synthase deficiencies

Fornůsková, Daniela January 2011 (has links)
Mgr. Daniela Fornuskova PhD thesis Biochemical and molecular studies of cytochrome c oxidase and ATP synthase deficiencies ABSTRACT The mammalian organism fully depends on the oxidative phosphorylation system (OXPHOS) as the major energy (ATP) producer of the cell. Disturbances of OXPHOS may be caused by mutations in either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). One part of the thesis is focused on the role of early and late assembled nuclear-encoded structural subunits of cytochrome c oxidase (CcO) as well as Oxa1l, the human homologue of the yeast mitochondrial Oxa1 translocase, in the biogenesis and function of the human CcO complex using stable RNA interference of COX4, COX5A, COX6A1 and OXA1L, as well as expression of epitope-tagged Cox6a, Cox7a and Cox7b, in HEK (human embryonic kidney)- 293 cells. Our results indicate that, whereas nuclear- encoded CcO subunits Cox4 and Cox5a are required for the assembly of the functional CcO complex, the Cox6a subunit is required for the overall stability of the holoenzyme. In OXA1L knockdown HEK-293 cells, intriguingly, CcO activity and holoenzyme content were unaffected, although the inactivation of OXA1 in yeast was shown to cause complete absence of CcO activity. In addition, we compared OXPHOS protein deficiency patterns in mitochondria from skeletal...
73

Funkční charakterizace nových komponent savčího mitochondriálního proteomu. / Functional characterisation of new components of mitochondrial proteome.

Kovalčíková, Jana January 2018 (has links)
1 Abstract It has been estimated that the mammalian mitochondrial proteome consists of ~1500 distinct proteins and approximately one quarter of them is still not fully characterized. One of these proteins is TMEM70, protein involved in the biogenesis of the eukaryotic F1Fo-ATP synthase. TMEM70 mutations cause isolated deficiency of ATP synthase often resulting in a fatal neonatal mitochondrial encephalocardiomyopathies in patients. To understand the molecular mechanism of TMEM70 action, we generated constitutive Tmem70 knockout mice, which led to embryonic lethal phenotype with disturbed ATP synthase biogenesis. Subsequently generated inducible Tmem70 mouse knockout was lethal by the week 8 post induction. It exhibited primarily impaired liver function, which contrasts with the predominantly cardiologic phenotype at disease onset in humans. Liver mitochondria revealed formation of labile ATP synthase subcomplexes lacking subunit c. Thus, in case of TMEM70 deficiency c-oligomer was not incorporated into ATP synthase, which led to critical impairment of mitochondrial energy provision, analogous to TMEM70 dysfunction in humans. In TMEM70 deficient models, the ATP synthase deficiency reached the 'threshold' for its pathologic presentation, which we quantified at 30 %. We observed compensatory increases in the...
74

Studium poruch cytochrom c oxidasy a ATP synthasy na biochemické a molekulární úrovni / Biochemical and molecular studies of cytochrome c oxidase and ATP synthase deficiencies

Fornůsková, Daniela January 2011 (has links)
Mgr. Daniela Fornuskova PhD thesis Biochemical and molecular studies of cytochrome c oxidase and ATP synthase deficiencies ABSTRACT The mammalian organism fully depends on the oxidative phosphorylation system (OXPHOS) as the major energy (ATP) producer of the cell. Disturbances of OXPHOS may be caused by mutations in either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). One part of the thesis is focused on the role of early and late assembled nuclear-encoded structural subunits of cytochrome c oxidase (CcO) as well as Oxa1l, the human homologue of the yeast mitochondrial Oxa1 translocase, in the biogenesis and function of the human CcO complex using stable RNA interference of COX4, COX5A, COX6A1 and OXA1L, as well as expression of epitope-tagged Cox6a, Cox7a and Cox7b, in HEK (human embryonic kidney)- 293 cells. Our results indicate that, whereas nuclear- encoded CcO subunits Cox4 and Cox5a are required for the assembly of the functional CcO complex, the Cox6a subunit is required for the overall stability of the holoenzyme. In OXA1L knockdown HEK-293 cells, intriguingly, CcO activity and holoenzyme content were unaffected, although the inactivation of OXA1 in yeast was shown to cause complete absence of CcO activity. In addition, we compared OXPHOS protein deficiency patterns in mitochondria from skeletal...
75

Strukturní a funkční interakce mitochondriálního systému fosforylace ADP / Structural and Functional Interactions of Mitochondrial ADP-Phosphorylating Apparatus

Nůsková, Hana January 2016 (has links)
The complexes of the oxidative phosphorylation (OXPHOS) system in the inner mitochondrial membrane are organised into structural and functional super-assemblies, so-called supercomplexes. This type of organisation enables substrate channelling and hence improves the overall OXPHOS efficiency. ATP synthase associates into dimers and higher oligomers. Within the supercomplex of ATP synthasome, it interacts with ADP/ATP translocase (ANT), which exchanges synthesised ATP for cytosolic ADP, and inorganic phosphate carrier (PiC), which imports phosphate into the mitochondrial matrix. The existence of this supercomplex is generally accepted. Experimental evidence is however still lacking. In this thesis, structural interactions between ATP synthase, ANT and PiC were studied in detail. In addition, the interdependence of their expression was examined either under physiological conditions in rat tissues or using model cell lines with ATP synthase deficiencies of different origin. Specifically, they included mutations in the nuclear genes ATP5E and TMEM70 that code for subunit ε and the ancillary factor of ATP synthase biogenesis TMEM70, respectively, and a microdeletion at the interface of genes MT-ATP6 and MT-COX3 that impairs the mitochondrial translation of both subunit a of ATP synthase and subunit Cox3...
76

Mitochondriání poruchy ATP syntázy jaderného původu / Mitochondrial ATP synthase deficiencies of a nuclear genetic origin

Karbanová, Vendula January 2013 (has links)
ATP synthase represents the key enzyme of cellular energy provision and ATP synthase disorders belong to the most deleterious mitochondrial diseases affecting pediatric population. The aim of this thesis was to identify nuclear genetic defects and describe the pathogenic mechanism of altered biosynthesis of ATP synthase that leads to isolated deficiency of this enzyme manifesting as an early onset mitochondrial encephalo-cardiomyopathy. Studies in the group of 25 patients enabled identification of two new disease-causing nuclear genes responsible for ATP synthase deficiency. The first affected gene was TMEM70 that encodes an unknown mitochondrial protein. This protein was identified as a novel assembly factor of ATP synthase, first one specific for higher eukaryotes. TMEM70 protein of 21 kDa is located in mitochondrial inner membrane and it is absent in patient tissues. TMEM70 mutation was found in 23 patients and turned to be the most frequent cause of ATP synthase deficiency. Cell culture studies also revealed that enzyme defect leads to compensatory-adaptive upregulation of respiratory chain complexes III and IV due to posttranscriptional events. The second affected gene was ATP5E that encodes small structural epsilon subunit of ATP synthase. Replacement of conserved Tyr12 with Cys caused...
77

Strukturní a funkční interakce mitochondriálního systému fosforylace ADP / Structural and Functional Interactions of Mitochondrial ADP-Phosphorylating Apparatus

Nůsková, Hana January 2016 (has links)
The complexes of the oxidative phosphorylation (OXPHOS) system in the inner mitochondrial membrane are organised into structural and functional super-assemblies, so-called supercomplexes. This type of organisation enables substrate channelling and hence improves the overall OXPHOS efficiency. ATP synthase associates into dimers and higher oligomers. Within the supercomplex of ATP synthasome, it interacts with ADP/ATP translocase (ANT), which exchanges synthesised ATP for cytosolic ADP, and inorganic phosphate carrier (PiC), which imports phosphate into the mitochondrial matrix. The existence of this supercomplex is generally accepted. Experimental evidence is however still lacking. In this thesis, structural interactions between ATP synthase, ANT and PiC were studied in detail. In addition, the interdependence of their expression was examined either under physiological conditions in rat tissues or using model cell lines with ATP synthase deficiencies of different origin. Specifically, they included mutations in the nuclear genes ATP5E and TMEM70 that code for subunit ε and the ancillary factor of ATP synthase biogenesis TMEM70, respectively, and a microdeletion at the interface of genes MT-ATP6 and MT-COX3 that impairs the mitochondrial translation of both subunit a of ATP synthase and subunit Cox3...
78

Venom Peptides Cathelicidin and Lycotoxin Cause Strong Inhibition of Escherichia coli ATP Synthase

Azim, Sofiya, McDowell, Derek, Cartagena, Alec, Rodriguez, Ricky, Laughlin, Thomas F., Ahmad, Zulfiqar 01 June 2016 (has links)
Venom peptides are known to have strong antimicrobial activity and anticancer properties. King cobra cathelicidin or OH-CATH (KF-34), banded krait cathelicidin (BF-30), wolf spider lycotoxin I (IL-25), and wolf spider lycotoxin II (KE-27) venom peptides were found to strongly inhibit Escherichia coli membrane bound F1Fo ATP synthase. The potent inhibition of wild-type E. coli in comparison to the partial inhibition of null E. coli by KF-34, BF-30, Il-25, or KE-27 clearly links the bactericidal properties of these venom peptides to the binding and inhibition of ATP synthase along with the possibility of other inhibitory targets. The four venom peptides KF-34, BF-30, IL-25, and KE-27, caused ≥85% inhibition of wild-type membrane bound E.coli ATP synthase. Venom peptide induced inhibition of ATP synthase and the strong abrogation of wild-type E. coli cell growth in the presence of venom peptides demonstrates that ATP synthase is a potent membrane bound molecular target for venom peptides. Furthermore, the process of inhibition was found to be fully reversible.
79

Inhibition of ATPase Activity of Escherichia Coli ATP Synthase by Polyphenols

Dadi, Prasanna K., Ahmad, Mubeen, Ahmad, Zulfiqar 01 July 2009 (has links)
We have studied the inhibitory effect of five polyphenols namely, resveratrol, piceatannol, quercetin, quercetrin, and quercetin-3-β-d glucoside on Escherichia coli ATP synthase. Recently published X-ray crystal structures of bovine mitochondrial ATP synthase inhibited by resveratrol, piceatannol, and quercetin, suggest that these compounds bind in a hydrophobic pocket between the γ-subunit C-terminal tip and the hydrophobic inside of the surrounding annulus in a region critical for rotation of the γ-subunit. Herein, we show that resveratrol, piceatannol, quercetin, quercetrin, or quercetin-3-β-d glucoside all inhibit E. coli ATP synthase but to different degrees. Whereas piceatannol inhibited ATPase essentially completely (∼0 residual activity), inhibition by other compounds was partial with ∼20% residual activity by quercetin, ∼50% residual activity by quercetin-3-β-d glucoside, and ∼60% residual activity by quercetrin or resveratrol. Piceatannol was the most potent inhibitor (IC50 ∼14 μM) followed by quercetin (IC50 ∼33 μM), quercetin-3-β-d glucoside (IC50 ∼71 μM), resveratrol (IC50 ∼94 μM), quercitrin (IC50 ∼120 μM). Inhibition was identical in both F1Fo membrane preparations as well as in isolated purified F1. In all cases inhibition was reversible. Interestingly, resveratrol and piceatannol inhibited both ATPase and ATP synthesis whereas quercetin, quercetrin or quercetin-3-β-d glucoside inhibited only ATPase activity and not ATP synthesis.
80

Role of αPhe-291 Residue in the Phosphate-Binding Subdomain of Catalytic Sites of Escherichia Coli ATP Synthase

Brudecki, Laura, Grindstaff, Johnny J., Ahmad, Zulfiqar 15 March 2008 (has links)
The role of αPhe-291 residue in phosphate binding by Escherichia coli F1F0-ATP synthase was examined. X-ray structures of bovine mitochondrial enzyme suggest that this residue resides in close proximity to the conserved βR246 residue. Herein, we show that mutations αF291D and αF291E in E. coli reduce the ATPase activity of F1F0 membranes by 350-fold. Yet, significant oxidative phosphorylation activity is retained. In contrast to wild-type, ATPase activities of mutants were not inhibited by MgADP-azide, MgADP-fluoroaluminate, or MgADP-fluoroscandium. Whereas, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) inhibited wild-type ATPase essentially completely, ATPase in mutants was inhibited maximally by ∼75%, although reaction still occurred at residue βTyr-297, proximal to αPhe-291 in the phosphate-binding pocket. Inhibition characteristics supported the conclusion that NBD-Cl reacts in βE (empty) catalytic sites, as shown previously by X-ray structure analysis. Phosphate protected against NBD-Cl inhibition in wild-type but not in mutants. In addition, our data suggest that the interaction of αPhe-291 with phosphate during ATP hydrolysis or synthesis may be distinct.

Page generated in 0.0352 seconds