• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 10
  • 9
  • 7
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 93
  • 93
  • 22
  • 18
  • 17
  • 15
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Das molekulare Drehlager der ATP-Synthase

Müller, Martin 06 October 2004 (has links)
Das molekulare Drehlager der ATP-Synthase 1. Sechs verschiedene EF1-Deletionsmutanten mit verkürzten gamma-Untereinheiten wur­den mittels PCR hergestellt. Die Deletionen befinden sich jeweils am C-terminalen Ende der Untereinheit und umfassen 3 (MM16), 6 (MM20), 9 (MM17), 12 (MM8), 15 (MM18) und 18 (MM19) Aminosäurereste. 2. Durch einen Wachstumstest auf Succinat-Agarplatten wurde festgestellt, daß die von den Plasmiden pMM16, pMM20, pMM17 und pMM8 codierten ATP-Syntha­sen in E. coli DK8 funktionell exprimiert werden können, während pMM18 und pMM19 funktionsunfähige ATP-Synthasen liefern. Die Wachstumsgeschwindig­keit der DK8-Mutanten MM16, MM20 und MM17 auf Succinatmedium wird durch die Deletionen nicht beeinflußt. Hingegen besitzt E. coli DK8 pMM8 auf diesem Medium eine um etwa 33% geringere Wachstumsgeschwindigkeit. 3. Die DK8-Klone MM16, MM20, MM17 und MM8 wurden für die Expression und Isolierung von EF1-Komplexen verwendet. MM18 und MM19 lieferten keine mit Hilfe des S+G-Proteintests nachweisbaren Mengen an EF1. Durch die Verkürzung der Untereinheit gamma kam es bei der Aufreinigung der Enzymkomplexe nicht zu ei­nem verstärkten Verlust dieser Untereinheit. Aufgereinigtes KH7-EF1 (Kontroll-EF1 ohne Verkürzung des gamma-C-Terminus) und die EF1-Komplexe der Deletions­mutanten wiesen ein ähnliches alpha/beta:gamma-Verhältnis auf. 4. Die ATP-Hydrolyseaktivitäten der EF1-Deletionsmutanten zeigten eine starke Ab­hängigkeit von der Deletionslänge. So fielen die Aktivitäten bei 35ºC von 93 u/mg (KH7-EF1) um ca. 75% auf 22 u/mg (MM8-EF1) ab. Dagegen sanken die Aktivie­rungsenergien für die ATP-Hydrolyse durch die EF1-Deletionsmutanten mit zu­nehmender Deletionslänge erheblich schwächer ab. Hier konnte für KH7-EF1 eine Aktivierungsenergie von 54 kJ/mol und für MM8-EF1 35 kJ/mol ermittelt werden. Dies entspricht einer Abnahme um ca. 35%. 5. Das durch die Rotor-Untereinheit gamma erzeugte Drehmoment zeigte nur eine geringe Abhängigkeit von der Deletionslänge. So wiesen die EF1-Komplexe der Deleti­onsmutanten gegenüber KH7-EF1 nur ein um ca. 20% verringertes Drehmoment auf. Eine starke Abhängigkeit von der Deletionslänge wies im mikrovideographi­schen Rotationstest jedoch die Ausbeute an Rotatoren bezogen auf die Beobach­tungszeit der Küvetten auf. Dabei nahm die Ausbeute von KH7-EF1 zu MM8-EF1 erheblich ab. Keine Abhängigkeit von der Deletionslänge zeigte dagegen das Ro­tations/Rotationspausen-Verhältnis innerhalb der Laufzeiten der Rotatoren, die von etwa 10 – 190 s (durchschnittlich ca. 60 s) variierten. Aufgrund der verhältnismä­ßig kurzen Laufzeiten ist eine exakte Angabe des Rotations/Rotationspausen-Ver­hältnisses jedoch nicht möglich. 6. Rotationsexperimente mit EFOF1-Komplexen, die über die C-terminale gamma-Deletion deltaS281-V286 (gamma-6) verfügten, scheiterten möglicherweise aufgrund der Instabilität der Enzymkomplexe. 7. Da die Funktion aktiver EF1-Komplexe durch die gamma-Deletionen offenbar kaum beeinflußt wird, muß davon ausgegangen werden, daß die geringere ATP-Hydroly­seaktivität der Deletionsmutanten durch ein verändertes Verhältnis von aktiven und inaktiven Enzymkomplexen hervorgerufen wird. Die Deletionen beeinflußen damit weniger die mechanische Funktion des Enzyms sondern vielmehr die Stabilität ak­tiver Enzymkomplexe. 8. Mit der Mutante MM10 wurde ein EF1-Komplex erzeugt, der eine Verknüpfung der Rotoruntereinheit gamma mit einer Statoruntereinheit alpha über die Cysteine alphaC280 und gammaC285 ermöglichte. Eine Verknüpfung der beiden Untereinheiten konnte durch Oxidation mit 100 µM DTNB in etwa 30 min zu >90% erreicht werden. Eine Öff­nung der Disulfidbrücke durch Reduktion mit 20 mM DTT erforderte Inkubations­zeiten von bis zu etwa 600 min (Ausbeute >90%). Die Bildung einer Disulfidbrü­cke zwischen alphaC280 und gammaC285 hatte weder einen Einfluß auf die ATP-Hydroly­seaktivität des Enzyms noch auf die Aktivierungsenergie der ATP-Hydrolyse durch MM10-EF1. 9. MM10-EF1 ließ sich im ATP-Hydrolyse-Aktivitätstest über einen Zeitraum von 5 min durch Zugabe von 1 mM AMP-PNP nahezu vollständig hemmen (ca. 96%), während sich mit 1 mM AMP-PNP + 1 mM ADP, 1 mM NaN3 und 1 mM NaN3 + 1 mM ADP nur Inhibierungsgrade von 77-88% erreichen ließen. 10. Durch einen biochemischen Rotationstest konnte die freie Drehbarkeit des C-termi­nalen Bereichs von gamma im alpha3beta3-Hexagon des EF1-Komplexes nachgewiesen werden. Die Drehbarkeit ließ sich auch durch Zugabe von Inhibitoren des Enzym­komplexes im untersuchten Zeitbereich von Stunden nicht blockieren. Dadurch kann nicht bewiesen werden, daß die rotatorische Mobilität des C-terminalen gamma-Be­reichs ausschließlich auf eine katalytisch bedingte gamma-Rotation zurückzuführen ist. Eine weitere Ursache für die rotatorische Mobilität könnte in einer hohen struktu­rellen Flexibilität des gesamten Lagerbereichs von EF1 bestehen. Der Rotationstest zeigt jedoch, daß die durch molekulardynamische Berechnungen nahegelegte Fi­xierung des C-terminalen gamma-Bereichs bei der gamma-Rotation für die Funktion des EF1-Komplexes offenbar keine Rolle spielt. Ein weiterer biochemischer Rotationstest zum Nachweis der Inhibierung der gamma Ro­tationsbewegung durch kompetetive Inhibitoren über einen Zeitraum von etwa 18 h scheiterte offenbar aufgrund der experimentellen Auslegung des Versuchs.
52

Atomic and electronic analysis of interactions between nanoporous Auand proteins / ナノポーラス金とタンパク質の電子・原子論的相互作用解析

Miyazawa, Naoki 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第21881号 / エネ博第382号 / 新制||エネ||74(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー応用科学専攻 / (主査)教授 馬渕 守, 教授 宅田 裕彦, 教授 土井 俊哉 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
53

Requirement of ßDELSEED-Motif of <em>Escherichia coli</em> F<sub>1</sub>F<sub>O</sub> ATP Synthase in Antimicrobial Peptide Binding.

Tayou, Junior Kom 01 May 2011 (has links) (PDF)
F1FO ATP synthase is a membrane bound enzyme capable of synthesizing and hydrolyzing ATP. Lately, α-helical cationic peptides such as melittin and melittin related peptide (MRP) were shown to inhibit E. coli ATP synthase. The proposed but unconfirmed site of inhibition is βDELSEED-motif formed by the residues 380-386, located at the interface of α/β subunit of ATP synthase. This project was a mutagenic analysis of βDELSEED-motif residues to understand the binding mechanism and mode of action of peptide inhibitors. The study addressed 2 main questions: Are the antibacterial/anticancer effects of these peptides related to their inhibitory action on ATP synthase through interaction with the βDELSEED-motif? If so, which amino acid residues play critical role in peptide binding? The findings demonstrated that the βDELSEED-motif is the binding site of the above peptides on ATP synthase and Glutamate residues are more important in peptide binding than the Aspartate residues.
54

Role of a-Subunit VISIT-DG Sequence Residues Ile-346 and Ile-348 in the Catalytic Sites of Escherichia Coli ATP Synthase.

Zhao, Chao 07 May 2011 (has links) (PDF)
F1FO-ATP synthase is the primary source of cellular energy production in most living organisms. Malfunction of this enzyme is implicated in diseases. There are many functional motifs in and around the catalytic sites of this enzyme. One of them is the highly conserved α-subunit VISIT-DG sequence that is close to the Pi binding subdomain. The questions arise "Are they involved in Pi binding? Or are they there simply for the structural integrity of the catalytic sites?" Here, αIle-346and αIle-348, two important residues of the conserved VISIT-DG sequence, are discussed. Each residue was mutated to A/R/D/Q. Growth assays in limiting glucose media and on succinate plates suggests αIle-346 and αIle-348 are critical for the normal enzymatic function (oxidative phosphorylation). And the biochemical assays do suggest both αI-346 and αI-348 are required to maintain catalytic site, involved in Pi binding indirectly, but αI-348 plays more important role than αI-346.
55

Inhibition of <em>Escherichia coli</em> ATP Synthase Using Bioflavonoids.

Chinnam, Naga babu 01 May 2011 (has links) (PDF)
ATP synthase is the fundamental means of the cellular energy production in all organisms. Malfunction of ATP synthase is associated with multiple disease conditions. This enzyme is not only implicated in disease conditions but also likely to contribute in new therapies for multiple diseases by being a molecular target for several inhibitors. Bioflavonoids are a class of plant secondary metabolites known to exhibit antioxidants, chemopreventive, and chemotherapeutic properties. Their actual mode of action is not clear; however, some bioflavonoid are known to block the action of enzymes and other substances that promote the growth of cancer cells by binding to the multiple molecular targets in the body including ATP synthase. The most common dietary polyphenol resveratrol was shown to induce apoptosis via mitochondrial pathways and has chemopreventive properties against prostate cancer. Here we report the general inhibitory effects of dietary bioflavonoids on ATP synthase enzyme and intact E. coli cells.
56

Regulation of mitochondrial ATPase by its inhibitor protein IF1 in Saccharomyces cerevisiae / Régulation de l’ATP synthase mitochondriale par son inhibiteur endogène IF1 chez Saccharomyces cerevisiae

Wu, Qian 12 December 2013 (has links)
ATP synthase est une protéine essentielle associée à la membrane interne mitochondriale, qui synthétise l'ATP par couplage d’un transport de protons au travers de la membrane, en dissipant un gradient électrochimique de protons créé par la chaîne respiratoire. Cette réaction assure l’alimentation en énergie des processus biologiques cellulaires. Si la membrane mitochondriale se dépolarise, la réaction inverse d’hydrolyse d’ATP est rapidement bloquée par un inhibiteur soluble naturel de l’ATPase mitochondriale, IF1. Cette régulation efficace et réversible évite le gaspillage de l’énergie par la cellule. Chez la levure, IF1 est une petite protéine de 63 amino-acides. Elle se fixe sur l'une des trois interfaces catalytiques de l’ATP synthase et inhibe l’hydrolyse d’ATP. Bien que les structures cristallographiques des complexes F1-ATPase inhibés par IF1 aient été résolus, l'étape initiale de reconnaissance et celle du verrouillage d’IF1 restent peu claires au niveau moléculaire.Pendant ma thèse, nous nous sommes intéressés au mécanisme d’inhibition de l’ATPase par IF1. Par des analyses des structures disponibles et des alignements de séquence, nous avons sélectionné de nombreux résidus localisés dans différentes régions des sous-unités α et β de l'ATP synthase de Saccharomyces cerevisiae et susceptibles de participer au processus de fixation d'IF1. En utilisant le mutagenèse dirigée combinée à des experiences cinétiques, nous avons étudié les effects des mutations sur l’inhibition de l’ATP synthase par IF1 chez Saccharomyces cerevisiae. Dans ce travail, nous avons identifié des résidus ou motifs des sous-unités α et β de l’ATP synthase impliqués dans les étapes de reconaissance et/ou verrouillage d’IF1, ce qui nous permet de compléter les études structurales et d'esquisser un mécanisme de fixation d'IF1. / ATP synthase is an essential protein complex located in the mitochondrial inner membrane, which synthesize ATP by coupling to a rotary proton transport across the membrane at the expense of the electrochemical proton gradient created by the electron transport chain. This reaction guarantees the supply of energy to biological processes in a cell. When mitochondria get deenergized, i.e. the protomotive force across the mitochondrial inner membrane collapses, the ATP synthase switches from ATP synthesis to hydrolysis. This hydrolytic activity is then immediately prevented by a natural soluble mitochondrial ATPase inhibitor, IF1. This efficient reversible inhibition system protects cells from wasting energy. In yeast, IF1 is a small protein consisting of 63 amino acids. It binds to one of the three (αβ) catalytic interfaces of ATP synthase and thereby blocks the rotary catalysis. Although the crystal structure of the dead-end IF1 inhibited F1-ATPase complex has been resolved, IF1 initial binding and locking to ATPase still remain unclear events at the molecular level.During my thesis, we have been interested in the dynamic mechanism of ATPase inhibition by IF1. By means of analyses of published structures and protein sequence alignment, we selected numerous residues located in different regions of Saccharomyces cerevisiae ATP synthase α, β subunits, which might potentially paticipate in IF1 binding process. Using site-directed mutagenesis combined with kinetic experiments, we studied the effect of mutations of the selected candidates on the rate and extent of ATPase inhibition by IF1. In this way we identified residues or motifs in ATP synthase α, β subunits involved in IF1 recognition and/or locking steps, which allows complementing structural studies and drawing an outline of IF1 binding.
57

Genetické a funkční příčiny mitochondriálních chorob vyvolaných defekty ATP syntázy / Genetic and functional characterisation of mitochondrial diseases caused by ATP synthase defects

Tauchmannová, Kateřina January 2015 (has links)
Disorders of ATP synthase, the key enzyme of mitochondrial energy provision belong to the most severe metabolic diseases presenting mostly as early-onset mitochondrial encephalo-cardio-myopathies. Mutations in four nuclear genes can result in isolated deficiency of ATP synthase, all sharing a similar biochemical phenotype - pronounced decrease in the content of fully assembled and functional ATP synthase complex. The thesis summarises studies on two distinct causes of ATP synthase deficiency. First is TMEM70 protein, a novel ancillary factor of ATP synthase, which represents most frequent determinant of severe inborn deficiency of ATP synthase. TMEM70 is a 21 kDa protein of the inner mitochondrial membrane, facilitating the biogenesis of mitochondrial ATP synthase, possibly through TMEM70 protein region exposed to the mitochondrial matrix, but the proper regulatory mechanism remains to be elucidated. In TMEM70-lacking patient fibroblasts the low content of ATP synthase induces compensatory adaptive upregulation of mitochondrial respiratory chain complexes III and IV, interestingly by a posttranscriptional mechanisms. The second type of ATP synthase deficiency studied was mtDNA m.9205delTA mutation affecting maturation of MT-ATP8/MT-ATP6/MT-CO3 mRNA and thus biosynthesis of Atp6 (subunit a) and Cox3...
58

Genetické a funkční příčiny mitochondriálních chorob vyvolaných defekty ATP syntázy / Genetic and functional characterisation of mitochondrial diseases caused by ATP synthase defects

Tauchmannová, Kateřina January 2015 (has links)
Disorders of ATP synthase, the key enzyme of mitochondrial energy provision belong to the most severe metabolic diseases presenting mostly as early-onset mitochondrial encephalo-cardio-myopathies. Mutations in four nuclear genes can result in isolated deficiency of ATP synthase, all sharing a similar biochemical phenotype - pronounced decrease in the content of fully assembled and functional ATP synthase complex. The thesis summarises studies on two distinct causes of ATP synthase deficiency. First is TMEM70 protein, a novel ancillary factor of ATP synthase, which represents most frequent determinant of severe inborn deficiency of ATP synthase. TMEM70 is a 21 kDa protein of the inner mitochondrial membrane, facilitating the biogenesis of mitochondrial ATP synthase, possibly through TMEM70 protein region exposed to the mitochondrial matrix, but the proper regulatory mechanism remains to be elucidated. In TMEM70-lacking patient fibroblasts the low content of ATP synthase induces compensatory adaptive upregulation of mitochondrial respiratory chain complexes III and IV, interestingly by a posttranscriptional mechanisms. The second type of ATP synthase deficiency studied was mtDNA m.9205delTA mutation affecting maturation of MT-ATP8/MT-ATP6/MT-CO3 mRNA and thus biosynthesis of Atp6 (subunit a) and Cox3...
59

Venom Peptides Lasioglossin II and Mastoparan B as Escherichia coli ATP synthase Inhibitors

Bello, Rafiat Ajoke 01 August 2016 (has links)
The inhibitory effects on Escherichia coli ATPase activity by two venom peptides, lasioglossin II and mastoparan B. Membrane bound F1FO ATP synthase was isolated from E. coli strain pBWU13.4/DK8 and treated with varied concentrations of lasioglossin II and mastoparan B. Lasioglossin II caused very low inhibition of ATPase activity, but the inhibition profile of mastoparan B was suggestive of an interesting biological effect. A relatively shorter total length, a smaller net positive charge, and a reduced amphipathic character of both peptides, as compared to previously tested antimicrobial peptides, may account for the limited degree of inhibition observed in the present study.
60

The Structure of Bovine Mitochondrial ATP Synthase by Single Particle Electron Cryomicroscopy

Baker, Lindsay 20 August 2012 (has links)
Single particle electron cryomicroscopy (cryo-EM) is a method of structure determination that uses many randomly oriented images of the specimen to construct a three-dimensional density map. In this thesis, single particle cryo-EM has been used to determine the structure of intact adenosine triphosphate (ATP) synthase from bovine heart mitochondria, an approximately 550 kDa membrane protein complex. In respiring organisms, ATP synthase is responsible for synthesizing the majority of ATP, a molecule that serves as an energy source for many cellular reactions. In order to understand the mechanism of ATP synthase, knowledge of the arrangement of subunits in the intact complex is necessary. To obtain maps of intact ATP synthase showing internal density distributions by single particle cryo-EM, methodological improvements to image acquisition, map refinement, and data selection were developed. Further, a novel segmentation algorithm was developed to aid in interpretation of maps. The use of these tools allowed for construction and interpretation of two maps of ATP synthase, solubilized in different membrane mimetics, in which the arrangement of subunits could be identified. These maps revealed interactions within the complex important for its function. In addition, evidence was obtained for curvature of membrane mimetics around ATP synthase, suggesting a role for the complex in maintenance of mitochondrial membrane morphology.

Page generated in 0.0444 seconds