• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 10
  • 9
  • 7
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 93
  • 93
  • 22
  • 18
  • 17
  • 15
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Caractérisation de lATP synthétase mitochondriale (complexe V) de lalgue verte Chlamydomonas reinhardtii. Spécialisation et évolution de lenzyme chez les Chlorophyceae.

Lapaille, Marie 28 April 2010 (has links)
Résumé Le complexe V mitochondrial (F1FO-ATP synthétase) catalyse la phosphorylation de lADP par le phosphate inorganique en utilisant la force proton-motrice générée par la chaîne de transport délectrons. Ce complexe protéique possède deux domaines : un secteur associé à la membrane, FO, impliqué dans la translocation des protons, et un domaine extrinsèque, F1, qui catalyse la synthèse dATP. Les deux secteurs sont connectés par deux bras : un bras central qui couple la translocation des protons à la région catalytique, et un bras latéral qui est considéré comme faisant partie du stabilisateur (stator) de lenzyme. Au cours de ce travail, nous nous sommes intéressés à lenzyme de deux algues appartenant à la classe des Chlorophyceae, Chlamydomonas reinhardtii et Polytomella sp.. L'enzyme des deux algues présente une composition sous-unitaire atypique, les sous-unités classiquement retrouvées chez les eucaryotes et impliquées dans larchitecture du bras périphérique ou dans la dimérisation du complexe en étant absentes. En contrepartie, 9 sous-unités dorigine évolutive inconnue sont associées à lenzyme. Elles ont été appelées Asa1 à 9 pour ATP Synthase Associated protein. Chez C. reinhardtii et Polytomella sp., lATP synthétase présente une stabilité accrue de sa forme dimérique in vitro, et, in vivo, les cellules de C. reinhardtii sont insensibles à loligomycine, un puissant inhibiteur de la translocation de protons au travers de FO. Nous avons dans un premier temps tenté détablir la composition sous-unitaire du complexe V chez des espèces appartenant aux différentes classes de Chlorophytes (Chlorophyceae, Trebouxiophyceae, Prasinophyceae et Ulvophyceae) en combinant analyses génomiques et protéomiques. Plusieurs sous-unités Asa ont ainsi pu être détectées chez des algues appartenant à divers ordres de Chlorophyceae. Au contraire, les analyses de séquences disponibles chez les autres classes de Chlorophytes (Trebouxiophyceae, Prasinophyceae et Ulvophyceae) indiquent une composition canonique de lenzyme. Lanalyse de la stabilité de la forme dimérique du complexe de différentes espèces d'algues vertes sur BN PAGE (Blue Native PolyAcrylamide Gel Electrophoresis) suggère également que la présence dun dimère stable est caractéristique aux Chlorophyceae. Par ailleurs, leur croissance, respiration, et niveaux d'ATP sont à peine affectés par la présence d'oligomycine à des concentrations inhibitrices chez les représentants des autres classes de Chlorophytes. Les nombreuses particularités communes aux algues appartenant à cette classe suggèrent que la perte d'éléments canoniques du stator est apparue lors de la séparation des Chlorophyceae et a été accompagnée du recrutement de nouvelles sous-unités. Ce réarrangement drastique de la composition de stator et du module de dimérisation pourrait avoir conféré de nouvelles propriétés à lenzyme, notamment une meilleure stabilité et une plus grande résistance à loligomycine. Nous avons également étudié la fonction de la sous-unité atypique Asa7 en inactivant son expression chez C. reinhardtii. Bien que la perte de la sous-unité Asa7 n'aie aucun impact sur la bioénergétique des cellules ou sur la structure mitochondriale, elle déstabilise lenzyme in vitro et rend la croissance, la respiration, et de le niveau d'ATP sensible à oligomycine. L'impact de la perte de l'activité ATP synthétase mitochondriale chez un organisme photosynthétique a été étudié chez C. reinhardtii par linactivation de l'expression du gène ATP2, codant pour la sous-unité catalytique beta. Les résultats démontrent que, en l'absence de beta, l'ATP synthétase ne peut plus être assemblée et les cellules deviennent dépendantes de la photosynthèse. La respiration en présence ou en absence du découpleur CCCP suggère que le passage des protons à travers la membrane interne mitochondriale est bloqué chez la souche mutante. Enfin, la morphologie des mitochondries est affectée, et les chloroplastes montrent un réaménagement massif de l'appareil photosynthétique, suggérant des répercussions importantes sur la synthèse dATP par les chloroplastes. Ces résultats contribuent à la compréhension des interactions entre organites bioénergétiques chez les organismes photosynthétiques.
22

Structural Characterization of F-type and V-type Rotary ATPases by Single Particle Electron Cryomicroscpy

Lau, Wilson 31 August 2012 (has links)
Adenosine triphosphate (ATP) is the molecular currency of intracellular energy transfer in living organisms. The enzyme ATP synthase is primarily responsible for ATP production in eukaryotes. In archaea and some bacteria, ATP is synthesized by V-ATPase that is related to ATP synthase both in structure and function. Both of these enzymes are reversible rotary motors capable of catalyzing ATP synthesis or hydrolysis. The rotation of the central rotor, which is powered by the flow of proton (or sometimes sodium ion) down the electrochemical gradient through the membrane-bound Fo/Vo region, leads to the chemical synthesis of ATP in F1/V1 region. The F1/V1 region, on the other hand, can catalyze ATP hydrolysis, which in turn leads to proton (or sodium) pumping across the membrane through rotation of the central rotor in the opposite direction. This thesis describes structure determination of both the intact F-type and V-type enzymes using single particle electron cryomicroscopy (cryo-EM), with the aim of better understanding their overall architecture, subunit organization and the mechanism of proton translocation. Our cryo-EM structural analysis on the F-type ATP synthase from Saccharomyces cerevisiae uncovered the arrangement of subunits a, b, c, and the two dimer-specific subunits e and g within the membrane-bound region of Fo. A model of oligomerization of the ATP synthase involving two distinct dimerization interfaces was proposed.The rotor-stator interaction within the membrane-bound region of both enzymes is responsible for proton translocation. Our cryo-EM structures of the V-ATPase from Thermus thermophilus reveal that the interaction between the rotary ring (rotor) and the I-subunit (stator) is surprisingly small, with only two subunits from the ring making contact with the I-subunit near the middle of the membrane. Furthermore, the spatial arrangement of transmembrane helices resolved in subunit I can form two passageways that could provide proton access through the membrane-bound region and is consistent with a two-channel model of proton translocation.
23

Structural Characterization of F-type and V-type Rotary ATPases by Single Particle Electron Cryomicroscpy

Lau, Wilson 31 August 2012 (has links)
Adenosine triphosphate (ATP) is the molecular currency of intracellular energy transfer in living organisms. The enzyme ATP synthase is primarily responsible for ATP production in eukaryotes. In archaea and some bacteria, ATP is synthesized by V-ATPase that is related to ATP synthase both in structure and function. Both of these enzymes are reversible rotary motors capable of catalyzing ATP synthesis or hydrolysis. The rotation of the central rotor, which is powered by the flow of proton (or sometimes sodium ion) down the electrochemical gradient through the membrane-bound Fo/Vo region, leads to the chemical synthesis of ATP in F1/V1 region. The F1/V1 region, on the other hand, can catalyze ATP hydrolysis, which in turn leads to proton (or sodium) pumping across the membrane through rotation of the central rotor in the opposite direction. This thesis describes structure determination of both the intact F-type and V-type enzymes using single particle electron cryomicroscopy (cryo-EM), with the aim of better understanding their overall architecture, subunit organization and the mechanism of proton translocation. Our cryo-EM structural analysis on the F-type ATP synthase from Saccharomyces cerevisiae uncovered the arrangement of subunits a, b, c, and the two dimer-specific subunits e and g within the membrane-bound region of Fo. A model of oligomerization of the ATP synthase involving two distinct dimerization interfaces was proposed.The rotor-stator interaction within the membrane-bound region of both enzymes is responsible for proton translocation. Our cryo-EM structures of the V-ATPase from Thermus thermophilus reveal that the interaction between the rotary ring (rotor) and the I-subunit (stator) is surprisingly small, with only two subunits from the ring making contact with the I-subunit near the middle of the membrane. Furthermore, the spatial arrangement of transmembrane helices resolved in subunit I can form two passageways that could provide proton access through the membrane-bound region and is consistent with a two-channel model of proton translocation.
24

Structural studies of the mitochondrial F-ATPase

Spikes, Tobias Edward January 2018 (has links)
The mitochondrial F-ATPases make about 90% of cellular ATP. They are multi-protein assemblies with a membrane extrinsic catalytic domain attached to a membrane embedded sector. They operate by a mechanical rotary mechanism powered by an electro-chemical gradient, generated across the inner mitochondrial membrane by respiration. A detailed molecular description has been provided by X-ray crystallographic studies and "single molecule" observations of the mechanism of the F1 catalytic domain. Details are known also of the architecture of the peripheral stalk of part of the stator and the membrane embedded region of the rotor. However, knowledge of the detailed structure of the rest of the membrane domain, and the detailed mechanism of generation of rotation is lacking. Recently, studies of the intact mitochondrial F-ATPases, determined by cryo-electron microscopy (cryo-em), have provided structural information at intermediate levels of resolution. Whilst these structures have given insights into the mechanism of generation of rotation, the information required for a molecular understanding of this mechanism is still lacking. Moreover, the locations and roles of six supernumerary membrane subunits are unclear. Some of them are likely to be involved in the formation of dimers of the enzyme which line the edges of mitochondrial cristae. Therefore, in this thesis, a procedure is described for the purification of dimers of the bovine and yeast F-ATPases. The structure of the bovine dimer has been determined by cryo-em at a resolution of ca. 6.9 Angstrom. This structure confirms features concerning the trans-membrane spans of the a-, A6L- and b-subunits observed in the monomeric complex. In addition, the single trans-membrane a-helix of the f-subunit has been located, and the subunit appears to mediate dimer formation. The structure of A6L has been extended, and the a-helices of subunits e- and g- have been located. Another novel feature has been assigned to the DAPIT subunit, and may provide links between dimers in forming larger oligomers. Further improvement in the resolution of the structure is hampered by the extreme conformational heterogeneity of the F-ATPase. To this end, the simpler Fo membrane domain has been isolated and characterized initially by electron microscopy in negative stain.
25

Mécanismes de régulation de l’ATP synthase mitochondriale de S. cerevisiae par son peptide endogène IF1 et étude de l’oligomérisation du peptide IF1 de S.cerevisiae / Mechanisms of the regulation of the mitochondrial ATP synthase of S. cerevisiae by its endogenous peptide IF1 and study of the oligomerization of yeast IF1

Andrianaivomananjaona, Tiona 07 November 2011 (has links)
L’ATP synthase ou ATPase de type F, ancrée aux membranes internes des mitochondries, est un complexe macromoléculaire qui utilise le gradient électrochimique généré par l’oxydation de petites molécules (NADH2, FADH2) dans les différents complexes de la chaîne respiratoire pour former l’ATP, vecteur énergétique universel. Le gradient électrochimique ou pm f est transformé en une énergie mécanique qui se traduit par le mouvement du rotor de l’ATP synthase dans un sens horaire vu depuis la membrane. La rotation de la sous-unité γ déforme successivement les trois sites catalytiques et permet ainsi la synthèse d’ATP. Dans certains cas, comme ceux de l’anoxie ou de l’hypoxie, le gradient électrochimique peut s’effondrer et l’ATP synthase hydrolyse alors l’ATP. Pour éviter cette hydrolyse futile, un petit peptide nommé IF1, régulateur spécifique des ATP synthases mitochondriales, vient s’insérer entre les sous-unités d’une interface catalytique et bloque instantanément le fonctionnement de l’ATPase. Cette inhibition est réversible puisque le peptide se décroche lorsque la membrane interne mitochondriale se réenergise.Dans ce travail de thèse, nous nous sommes intéressés à caractériser le mécanisme d’inhibition de l’ATPase de S.cerevisiae par son peptide endogène IF1 en s’appuyant essentiellement sur les quelques données structurales qui ont été publiées sur le peptide et sur le complexe inhibé IF1-F1ATPase de B.taurus.Constitué de 63 acides aminés chez S.cerevisiae et 84 acides aminés chez B.taurus, IF1 est majoritairement structuré en hélice α . Les études menées par Elena Cabezón ont montré qu’IF1 possédait différentes formes dont la prédominance et l’activité dépendait essentiellement du pH. Chez B.tauru , il existe une forme inhibitrice dimérique prédominante à pH inférieurs à 6,5 et une forme tétramérique dont nous connaissons la structure 3D qui est non inhibitrice et prépondérante à pH supérieurs à 6,5. Chez S.cerevisiae, il existe une forme monomérique inhibitrice prépondérante à pH supérieur à 6,5 et une forme dimérique prédominante à pH inférieurs à 6,5 et dont le caractère inhibiteur ou non n’a pas encore été déterminé. Sur la base de la structure 3D de l’IF1 bovin, nous avons voulu identifier les régions de dimérisation du peptide de levure en utilisant la technique de marquage de spin couplée à de la spectroscopie RPE. En plaçant des marqueurs de spin (MTSL) en partie médiane(E33C) ou en C-terminale(L54C),nous avons pu favoriser l’interface de dimérisation plutôt en partie médiane du peptide. Ce travail est encore au stade embryonnaire et ne nous permet pas, à ce jour, d’identifier la zone exacte de dimérisation.Dans un deuxième volet, nous avons voulu caractériser le mécanisme d’inhibition d’un point de vue dynamique et nous avons pu en préciser les différentes étapes : reconnaissance, verrouillage et stabilisation. Pour cela, nous avons associé la mutagenèse sur le peptide et sur l’enzyme aux cinétiques d’inhibition. Nous avons tout d’abord évalué le rôle de plusieurs résidus situés en C-terminal de la sous-unité β, dans la région de l’interface α/β qui se referme sur le peptide IF1, dans la reconnaissance moléculaire spécifique d’IF1 par l’ATPase mitochondriale. Nous avons ensuite montré que la partie N-terminale d’IF1 joue un rôle mineur dans la reconnaissance moléculaire mais son enroulement autour de la sous-unité γ constitue un loquet important dans la stabilisation du complexe inhibé. Enfin, la fermeture de l’interface catalytique sur IF1 crée une zone de contact entre la "bosse" de la sous-unité γ et la partie C-terminale de la sous-unitéα qui constitue la dernière clef de blocage du peptide au sein de la F1 -ATPase. Ce dernier point de fermeture est le seul qui n’implique aucun résidu du peptide IF1. / The F-type ATPase or ATP synthase, anchored to the inner mitochondrial membrane, is a macromolecular complex using the proton motive force (pmf) generated by the oxydation of small molecules, such as NADH2 and FADH2 , in the different respiratory complexes to form ATP. The pmf is converted into mechanical work by the clockwise rotation of the ATP synthase viewed from the membrane. The γ rotation successively distorts the three catalytic interfaces of the enzyme to allow the synthesis of ATP. Anoxia or hypoxia are cases in which the rotation of ATP synthase proceeds in the direction of ATP hydrolysis. A small peptide named IF1, 63 aminoacids-long in yeast and 84 aminoacids-long in bovine, specifically inhibits the mitochondrial ATP synthase in the direction of ATP hydrolysis. This inhibition is reversible since the peptide is released when the inner mitochondrial membrane is re-energized.In this work, we were interested in characterizing the inhibition mechanism of the mitochondrial ATP synthase of S.cerevisiae by its endogenous peptide IF1. To elaborate and strengthen our statements, we mainly used the structures of IF1 and of the inhibited IF1-F1ATPase complex of B. taurus.The data obtained by Elena Cabezón on bovine and yeast IF1 showed that different forms of the peptide coexist and that their pre-eminence depends on the pH. The bovine IF1 mainly adopts a dimeric form at pH below 6.5 and tetrameric one at pH above 6.5. Its inhibitory properties also vary with the pH. The dimeric form is inhibitory and the tetrameric one is not. In yeast, it is known that a monomeric form is predominant at pH above 6.5 and a dimeric form predominant at pH below 6.5. The monomeric form is inhibitory but nothing has been reported about the inhibitory properties of the dimeric form. By using the structural data of the bovine IF1, we tried to determine the dimerization region of the yeast IF1. For this aim, we decided to combine Site-Directed Spin Labeling (SDSL) with electron paramagnetic resonance (EPR) spectroscopy. Thus, we attached labels on the C-ter or the mid-region and we could propose that the dimer of yeast IF1 preferentially forms by the mid-region. This work is currently in the preliminary stage and other experiments would be necessary to confirm the precize region of dimerization. In a second part, we tried to precise the inhibitory mechanism by detailing the different steps of recognition, locking and stabilization of the inhibited complex. This was achieved by combining the mutagenesis of yeast IF1 and F1ATPase with kinetics of inhibition. First, we evaluated the role of some residues located in the C-terminal part of β subunit in the specific molecular recognition of IF1 by the mitochondrial ATPase. These residues belong to the region of the α/β interface that closes up on IF1 peptide. Then, we showed that the N-terminal part of IF1 plays a minor role in the molecular recognition but its winding around the γ subunit constitute an important lock in the inhibited complex. Finally, the closing of the catalytic interface on IF1 creates a contact region between the α and the γ subunit which is the last key that definitively locks the peptide in the cage "F1ATPase". This last locking point is the only one that does not involve any IF1 residue.
26

Vieillissement musculaire : impact de la protéolyse intracellulaire calcium-dépendante

Brulé, Cédric 25 November 2009 (has links)
La sarcopénie ou perte involontaire progressive de la masse musculaire chez le sujet âgé s’accompagne de l’altération de nombreux phénomènes physiologiques comparables à ceux observés chez les myopathes. Le processus de régénération musculaire est très ralenti, les activités protéolytiques intracellulaires sont modifiées et de nombreuses fonctions cellulaires sont perturbées en raison d’un stress oxydatif incontrôlé. L’intervention des calpaïnes, protéases neutres calcium-dépendantes, dans les processus associés au développement, à la régénération et à l’intégrité du tissu musculaire est incontestable. Les calpaïnes apparaissent, en effet, comme des acteurs clefs des voies de transductions liées à la myogenèse, la prolifération et la survie cellulaire. Toutefois aucune étude permettant d’établir la relation vieillissement du tissu musculaire- activité calpaïne n’a été entreprise à ce jour. Le projet a donc pour but principal d’inventorier les signaux pro-sarcopéniques interagissant avec les calpaïnes et d’établir leurs relations avec la fonctionnalité des cellules satellites, le stress oxydant et l’apoptose. Nous avons mis en évidence une augmentation de l’expression/activité des calpaïnes durant le vieillissement musculaire chez le rat et identifié des partenaires des calpaïnes impliqués dans des fonctions physiologiques altérées durant la sarcopénie: homéostasie calcique, activité contractile, production d’ATP, régénération musculaire. Nous avons également montré que l’induction d’un stress oxydant entraîne l’activation des calpaïnes au cours de la prolifération des cellules satellites de façon corrélée à une augmentation de l’apoptose. D’une manière intéressante, un traitement préventif par un antioxydant naturel d’écorce de pin (Oligopin®) est capable de prévenir à la fois l’apoptose et l’activation des calpaïnes. L’ensemble de ces résultats suggère que le stress oxydant associé au vieillissement induirait des mécanismes calpaïno-dépendants responsables de l’altération de processus essentiels à la fonction musculaire. / Aging is associated with a progressive and involuntary loss of muscle mass also known as sarcopenia. This condition represents a major public health concern. Although sarcopenia is well documented, the molecular mechanisms of this condition still remain unclear. The calcium-dependent proteolytic system is composed of calcium dependent cystein-proteases named calpains. Calpains are involved in a large number of physiological processes such as muscle growth and differentiation, and pathological conditions such as muscular dystrophies. The aim of this study was to determine the involvement of the proteolytic system in the phenotype associated with sarcopenia by identify the key proteins (substrates or regulators) interacting with calpains during muscle aging and identify pro-sarcopenic signals after oxidative stress induction in satellite cells. Muscle aging was correlated with the up-regulation of calpain activity. Ryanodine receptor 1, ATP synthase subunit alpha and alpha actinin 3 appear as key partners of calpains during muscle aging. Such interactions suggest an implication of calpains in many processes altered during aging including cytoskeletal disorganisation, regulation of calcium homeostasis and mitochondrial dysfunction. Furthermore, oxidative stress induction led to an increase in the activity of calpains correlated to an increase in apoptosis of proliferating satellite cells. In a very interesting way, a preventive treatment with a commercial antioxidant (Oligopin®) prevented these effects. All these data suggest that oxidative stress coupled observed during muscle aging could lead to calpaïno-dependent mechanisms responsible for apoptosis and muscle dysorganisation.
27

Venom Peptide Induced Inhibition of Escherichia coli ATP synthase

Azim, Sofiya 01 May 2015 (has links)
ATP is the main cellular energy generated by the enzyme ATP synthase in almost all organisms from bacteria to vertebrates. While malfunction of the ATP synthase complex is responsible for several disease conditions, the enzyme itself can be used as a potent molecular drug target to combat many diseases including microbial infections, cancer, tuberculosis, and obesity. Recent widespread escalation of antibiotic resistant microbes in general and E. coli in particular demands novel alternative approaches to combat microbial infections. Inhibition of ATP synthase by inhibitors such as peptides is known to deprive microbes of required energy, resulting in microbial cell death. Therefore, we have examined the venom peptide induced inhibition of E. coli ATP synthase. It was found that venom peptides completely inhibited E. coli ATP synthase and the process of inhibition was found to be fully reversible. This study also links the antimicrobial properties of peptides in part to the inhibition of ATP synthase. Thus, selective use of ATP synthase as a molecular drug may have an important impact on biology and medicine.
28

Dietary Bioflavonoids Inhibit Escherichia Coli ATP Synthase in a Differential Manner

Chinnam, Nagababu, Dadi, Prasanna K., Sabri, Shahbaaz A., Ahmad, Mubeen, Kabir, M. A., Ahmad, Zulfiqar 01 June 2010 (has links)
The aim of this study was to determine if the dietary benefits of bioflavonoids are linked to the inhibition of ATP synthase. We studied the inhibitory effect of 17 bioflavonoid compounds on purified F1 or membrane bound F1Fo E. coli ATP synthase. We found that the extent of inhibition by bioflavonoid compounds was variable. Morin, silymarin, baicalein, silibinin, rimantadin, amantidin, or, epicatechin resulted in complete inhibition. The most potent inhibitors on molar scale were morin (IC50∼0.07mM)>silymarin (IC50∼0.11mM)>baicalein (IC50∼0.29mM)>silibinin (IC50∼0.34mM)>rimantadin (IC50∼2.0mM)>amantidin (IC50∼2.5mM)>epicatechin (IC50∼4.0mM). Inhibition by hesperidin, chrysin, kaempferol, diosmin, apigenin, genistein, or rutin was partial in the range of 40-60% and inhibition by galangin, daidzein, or luteolin was insignificant. The main skeleton, size, shape, geometry, and position of functional groups on inhibitors played important role in the effective inhibition of ATP synthase. In all cases inhibition was found fully reversible and identical in both F1Fo membrane preparations and isolated purified F1. ATPase and growth assays suggested that the bioflavonoid compounds used in this study inhibited F1-ATPase as well as ATP synthesis nearly equally, which signifies a link between the beneficial effects of dietary bioflavonoids and their inhibitory action on ATP synthase.
29

Inhibition of Escherichia eoli ATP Synthase by Amphibian Antimicrobial Peptides

Laughlin, Thomas F., Ahmad, Zulfiqar 01 April 2010 (has links)
Previously melittin, the α-helical basic honey bee venom peptide, was shown to inhibit F1-ATPase by binding at the β-subunit DELSEED motif of F1Fo-ATP synthase. Herein, we present the inhibitory effects of the basic α-helical amphibian antimicrobial peptides, ascaphin-8, aurein 2.2, aurein 2.3, carein 1.8, carein 1.9, citropin 1.1, dermaseptin, maculatin 1.1, maganin II, MRP, or XT-7, on purified F1 and membrane bound F1Fo Escherichia coli ATP synthase. We found that the extent of inhibition by amphibian peptides is variable. Whereas MRP-amide inhibited ATPase essentially completely (∼96% inhibition), carein 1.8 did not inhibit at all (0% inhibition). Inhibition by other peptides was partial with a range of ∼13-70%. MRP-amide was also the most potent inhibitor on molar scale (IC50 ∼3.25 μM). Presence of an amide group at the c-terminal of peptides was found to be critical in exerting potent inhibition of ATP synthase (∼20-40% additional inhibition). Inhibition was fully reversible and found to be identical in both F1Fo membrane preparations as well as in isolated purified F1. Interestingly, growth of E. coli was abrogated in the presence of ascaphin-8, aurein 2.2, aurein 2.3, citropin 1.1, dermaseptin, magainin II-amide, MRP, MRP-amide, melittin, or melittin-amide but was unaffected in the presence of carein 1.8, carein 1.9, maculatin 1.1, magainin II, or XT-7. Hence inhibition of F1-ATPase and E. coli cell growth by amphibian antimicrobial peptides suggests that their antimicrobial/anticancer properties are in part linked to their actions on ATP synthase.
30

Nouveaux mécanismes de protection des cardiomyocytes contre les lésions d'ischémie / reperfusion / New mechanisms of protection of cardiomyocytes from ischemia / reperfusion injury

Ivanes, Fabrice 30 September 2013 (has links)
Les maladies cardiovasculaires constituent un problème de santé publique. Les pré et postconditionnement ischémiques mais aussi pharmacologiques constituent autant d‘avancées qui permettront l‘amélioration de la prise en charge des malades en situation d‘ischémie/reperfusion myocardique. Néanmoins, la morbi-mortalité des maladies cardiovasculaires reste importante et nécessite le développement de nouvelles techniques. Les premiers résultats de la thérapie cellulaire myocardique ont été décevants, et s‘il est désormais établi que l‘on ne peut régénérer le myocarde, les effets bénéfiques observés, notamment avec les cellules souches mésenchymateuses semblent en rapport avec un effet paracrine qui passe par l‘activation de la voie de signalisation PI3kinase/Akt sur un mécanisme comparable à celui du postconditionnement ischémique. Les médiateurs de cet effet sont vraisemblablement des facteurs de croissance comme le VEGF ou l‘IGF-1 même si un effet individuel direct de l‘une ou l‘autre de ces molécules n‘a pu être mis en évidence. La modulation de l‘activité de l‘ATP synthase mitochondriale est également une cible thérapeutique prometteuse. Cette enzyme inverse son activité et hydrolyse l‘ATP durant l‘ischémie, conduisant à dépléter le pool d‘ATP intracellulaire et accélérer la survenue de la mort cellulaire. De nouvelles molécules ayant un effet similaire à l‘IF1 permettent de bloquer cette inversion d‘activité de l‘ATP synthase, de préserver l‘ATP et donc d‘améliorer la survie cellulaire par un effet de type préconditionnement ischémique. Ces 2 techniques, très différentes mais non antinomiques, pourraient faire partie de l‘arsenal thérapeutique dans les années à venir / Cardiovascular diseases are a major problem of public health management. Ischemic and pharmacological pre and postconditioning should significantly improve the prognosis of patients suffering from myocardial ischemia/reperfusion. However, the morbi-mortality of these patients is still high and research must remain active. The first results of myocardial stem cell therapy show that we cannot regenerate myocardium but a recent meta-analysis reported positive effects that can be explained through a paracrine mechanism. Mesenchymal stem cells protect ischemic cardiomyocytes from reperfusion injury through a paracrine activation of the PI3kinase/Akt pathway in a similar way to ischemic postconditioning. The mediators of this protection could be growth factors such as VEGF or IGF-1 though we couldn’t demonstrate a direct effect of one or the other. Modulating the activity of the ATP synthase during ischemia is another promising therapeutic target. This enzyme reverses its activity and hydrolyses ATP when the supply in oxygen is impaired. This leads to the reduction of the cellular pool of ATP and accelerates cell death. We identified new small molecules with a similar effect to IF1 that can selectively inhibit the reverse activity of the ATP synthase, preserve ATP and thus increase cell survival in a preconditioning-like effect. These two different techniques could be part of the therapeutic arsenal against ischemia/reperfusion in the next decades.

Page generated in 0.0399 seconds