• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antiviral function of LL-37 on respiratory syncytial virus

Currie, Silke Maria January 2016 (has links)
Recurrent infection with human respiratory syncytial virus (RSV) is one of the most common causes for lower respiratory tract illness (LRI) in infants, the elderly, and immunocompromised individuals. Due to lack of vaccines and therapeutic interventions, medical care of acute RSV bronchiolitis is mostly limited to supportive measures. Thus, novel treatment options to control RSV infection are desperately required. The cationic host defence peptide human cathelicidin LL-37 possesses both microbicidal and immunomodulatory properties. This essential effector of the innate immune system holds potent antiviral activity against a variety of viruses, including influenza virus, and has been proposed as a promising candidate for antiviral drug development. Previous studies revealed that lower cathelicidin levels put RSV infected infants at risk for more severe RSV disease, while infection of lung epithelial cells induced cathelicidin up-regulation. These findings suggest that LL-37 might possess antiviral activity against RSV. However, its potential antiviral function on RSV remains to be elucidated. This thesis therefore aimed to evaluate the antiviral activity of cathelicidins against RSV, by assessing its relevance in vitro and in vivo and elucidating the underlying antiviral mechanism. Firstly, the antiviral effects of human cathelicidin LL-37 against RSV were addressed in vitro. Presence of LL-37 during infection potently reduced viral titres and protected cells against virus-associated cytopathic effects. Experiments revealed that only the core region of LL-37 holds antiviral activity against RSV. Antiviral effects were also observed for the murine LL-37 orthologue mCRAMP. Administration of LL-37 at different stages in the infection cycle provided evidence that LL-37 can be used preventatively, protecting against RSV infection by directly acting on both cells and viral particles. When given therapeutically, once an infection was established, LL-37 also limited viral spread. Next, the molecular mechanism mediating the peptide’s antiviral activity was investigated. It was demonstrated that LL-37 does not affect the interferon-mediated cellular antiviral immune response to RSV. Experiments established that LL-37 does not contribute to viral clearance by inducing epithelial cell death. Further mechanistic studies revealed that the peptide directly binds to RSV particles, destabilises the integrity of the viral envelope, and prevents adsorption of RSV to epithelial cells during the entry stage of infection. Finally, the in vivo relevance of LL-37 treatment and endogenous cathelicidin expression was examined, employing both murine and human model systems. It was established that LL-37 has protective antiviral effects against RSV in vivo. In contrast to the cell culture model, only co-administration of LL-37 and RSV, but not treatment prior or post infection, protects mice from clinical signs of infection. Levels of the murine LL-37 orthologue mCRAMP were increased in RSV infected lungs, pointing towards its importance in antiviral defence. In keeping with this, mCRAMP-deficient mice were more susceptible to RSV induced disease. Equally, individuals with low nasal LL-37 baseline levels that were experimentally challenged with RSV, were more susceptible to infection. This highlights the importance of endogenous cathelicidin expression to fight and control RSV infection. Overall, these results identify LL-37 as an important antiviral agent against RSV in vitro and in vivo, and emphasise the role of endogenous cathelicidins in the defence against this pathogen. Moreover, unravelling the underlying antiviral mechanism of LL-37 against RSV adds to our understanding of how CHDP act on enveloped viruses, thus supporting the development of new antiviral treatment options.
2

Molecular mechanisms and effector functions of the human cathelicidin host defence peptide LL-37: modulation of cytokine IL-32γ-induced responses and inflammatory arthritis

Choi, Ka-Yee Grace 03 April 2017 (has links)
Current therapies for chronic inflammatory diseases often abrogate the immune functions required to fight infections. Human cathelicidin host defence peptide (HDP) LL-37 selectively suppresses pathogen-induced inflammation, without compromising resistance to infections. These unique dual abilities of LL-37 make it a promising candidate as an alternative therapeutic for treating chronic inflammatory diseases. The objective of this study was to investigate the effects of LL-37 and its derivative peptide IG-19 in cytokine-mediated inflammation. I demonstrated that LL-37 and IG-19 selectively suppressed cytokine IL-32γ-induced pro-inflammatory cytokines, without compromising the production of anti-inflammatory cytokines, and chemokines in human PBMC and macrophages. However, significant quantitative differences between LL-37 and IG-19-mediated chemokine productions suggested that the mechanisms underlying the activity of these two peptides were different. I showed that both peptides suppressed IL-32γ-mediated phosphorylation of the Src-kinase FYN(Y420), known to enhance inflammation. Contrastingly, phosphorylation of the dual phosphatase MKP-1(S359), a negative regulator of inflammation, was enhanced in response to both peptides. Similarly, both peptides increased the activity of p44/42MAPK, which phosphorylates and stabilizes MKP-1. These results suggested that MKP-1 may be a critical mediator of the immunomodulatory activity of these peptides. Bioinformatic interrogation revealed that direct interacting protein partners of MKP-1 were overrepresented in MAPK and NF-κB signalling pathways. Both peptides enhanced the phosphorylation of p38MAPK. However, contrasting to LL-37, IG-19 did not mediate the phosphorylation of JNK MAPK and IKK-α signaling intermediates involved in inflammation. This was consistent with observations that chemokine production was significantly lower in response to IG-19 compared to LL-37. These results suggested that IG-19 may be a better immunomodulatory therapeutic candidate compared to LL-37. As cytokine-mediated inflammation plays critical roles in the disease pathogenesis of inflammatory arthritis, I examined the effects of exogenous administration of IG-19 in a murine model of collagen-induced arthritis. Administration of IG-19 decreased disease severity, suppressed pro-inflammatory cytokines and anti-collagen antibodies, and mitigated cartilage destruction in the CIA mice. These results provide a rationale to further develop IG-19 as a therapeutic agent for chronic inflammatory arthritis. The advantage of HDP based therapy is the potential to control inflammation without compromising the patient’s ability to resolve infections. / May 2017
3

Host defence peptides in pregnancy : influences on the microbiome and preterm labour

Baker, Tina Louise January 2017 (has links)
Although inflammation is a crucial mechanism in response to injury and pathogen clearance, inappropriate or excessive induction of the inflammatory response in pregnancy can cause initiation of the labour cascade and subsequent preterm delivery. Host Defence Peptides (HDPs) have important anti-microbial properties but are also implicated as multifunctional modulators of immunity and infection. They are predominantly secreted by mucosal epithelial cells and released by leukocytes. The specific HDPs that are the focus of this thesis are Human beta-defensin 3 (hBD3) and Human Cathelicidin (hCAP-18/LL-37). The immunomodulatory effect of HDPs in reproductive tissues in response to infection/inflammation has not been well studied. In a pregnant state, the hypothesis of this thesis is that HDPs have a dual role in preventing ascending infection, but also preventing an exacerbated inflammatory response that can cause preterm birth by initiation of the labour cascade. To explore this I determine whether bacterial stimuli can regulate HDPs expression in pregnancy tissues. I also explore what interactions HDPs have on the production/induction of important cytokines that are vital to the inflammatory response. With the aid of HDP knockout mice, the role of these peptides in infection/inflammation and continuation of pregnancy is investigated in a mouse-model of induced preterm-labour. To understand how ascending infection might be controlled by HDPs in pregnancy, I explore how HDPs regulate commensal and pathogenic bacteria. This is achieved by interrogating the maternal microbiome at mucosal sites in HDP knockout animals, utilising the bacterial 16S rRNA gene and next generation sequencing. Results Placental explants respond to Lipopolysaccharide (LPS) challenge by increasing production of pro-inflammatory cytokines. LL-37 but not hBD3 peptide was able to modulate this inflammation by inhibiting the release of these pro-inflammatory cytokines. To establish whether HDPs are critical in the continuation of pregnancy I use a LPS induced mouse–model of preterm labour in animals lacking the genes for the HDPs, Defb14 (Defb14-/-), or Camp (Camp-/-). Intrauterine injection of LPS induced preterm labour in wildtype mice. However, the Defb14-/- and Camp-/- mice do not have an increased rate of preterm labour. Key inflammatory mediators are increased in response to LPS-induced PTL. Camp-/- animals have a similar inflammatory response to wildtype mice when given LPS during pregnancy. To understand how ascending infection might be controlled by HDPs, I interrogated the maternal microbiome at mucosal sites in HDP knockout animals, utilising the bacterial 16S rRNA gene. I established a workflow for 16S rRNA gene sequencing on next-generation sequencing platforms and a bioinformatic pipeline for data analysis. Using this approach I was able to show the mucosal microbiome of Camp-/- animals were significantly different to that of wildtype controls, showing increased diversity in the microbes present. In murine pregnancy, there were very little global cumulative or progressive shifts in bacteria, with the exception of Candidatus arthromitus, which significantly increases with gestation compared to non-pregnancy This thesis has demonstrated that Host Defence Peptides are expressed in pregnancy tissues and have anti-inflammatory properties in response to bacterial stimuli. It is not clear whether the HDPs, hBD3 and LL-37 are fundamental to the immune defence in pregnancy by preventing excessive inflammation, Although, I have shown LL-37 may have a role in modulation of the maternal microbiota.
4

Clostridium difficile Responds to Antimicrobial Peptides and Oxidative Stress

McQuade, Rebecca January 2015 (has links)
Clostridium difficile (CD) is the leading cause of bacterial hospital-associated infection in North America. How CD colonizes the human host, including its response to the innate immune system and other stresses, is poorly understood. This work considers CD's defenses against two stresses found in the host - the antimicrobial peptide LL-37 and reactive oxygen species (ROS). LL-37 had bactericidal activity against CD. CD strains varied in their sensitivity to the peptide, and epidemic-associated strains were more resistant to LL-37 than others. CD became more resistant to LL-37 following exposure to sub-lethal concentrations of the peptide, suggesting the presence of inducible resistance mechanisms. A quantitative proteomics analysis revealed definite alterations in CD protein expression caused by LL-37. Specific changes included increased expression of DltB, a protein previously reported to confer resistance against other antimicrobial peptides. Notably, disruption of individual LL-37-induced genes did not sensitize CD to the peptide. This suggests functional redundancy, and that LL-37 may cause global changes in protein expression, not limited to antimicrobial peptide resistance determinants. One of the proteins most strongly induced by LL-37 was a predicted superoxide reductase (SOR). As CD is considered a strict anaerobe, expression of a predicted antioxidant protein was an interesting finding. Heterologous expression of CD SOR in a superoxide dismutase-deficient E. coli strain confirmed its action as a superoxide scavenger. Insertional inactivation of SOR rendered CD more sensitive to oxygen and ROS-generating compounds, indicating that SOR contributes to antioxidant defense in CD. SOR mutants were impaired in their ability to cause disease in hamsters, indicating a role for this protein in infection.
5

Extracellular Bactericidal Functions of Porcine Neutrophils

Scapinello, Sarah Elizabeth 12 January 2010 (has links)
Neutrophils are one of the main effector cells of innate immunity and were shown to kill bacteria by phagocytosis more than 100 years ago. Neutrophils are also capable of antimicrobial activity by producing extracellular structures named neutrophil extracellular traps (NETs). This thesis is an investigation of porcine neutrophils and their ability to produce NETs, as well as the antimicrobial ability of secretions from activated porcine neutrophils in combating a variety of common porcine pathogens. Porcine neutrophils were found to produce NET-like structures, and secretions from activated neutrophils were found to possess variable bactericidal activity against common pathogens of swine. Antimicrobial proteins dependent on elastase activity were shown to be partially responsible for the bactericidal activities of activated neutrophils. Several antimicrobial proteins and peptides were identified via proteomic techniques. This work allows for better understanding of innate immunity in swine, and identification of potential targets for addressing porcine health. / Ontario Ministry of Agriculture Food & Rural Affairs, Ontario Pork, Natural Sciences and Engineering Research Council of Canada
6

The production and function of cervical hCAP18/LL-37 in pregnancy

Frew, Lorraine January 2014 (has links)
Antimicrobial peptides (AMPs) are small proteins produced by epithelial surfaces, which have broad-spectrum antimicrobial and immunomodulatory activities. In the lung, skin and alimentary tract AMPs are known to be important in infectious and inflammatory conditions. Far less is known regarding the role of AMPs within the female reproductive tract, but as infection and inflammation are causes of preterm labour, AMPs may have a key function in maintain and protecting pregnancy. The major groups of human AMPs include the human beta defensins (HBDs), two antileukoproteinases (secretory leukocyte protease inhibitor (SLPI) and Trappin-2/Elafin), and the human cathelicidin hCAP18/LL-37, with several studies identifying their presence at sites throughout the reproductive tract. The cervix in pregnancy is positioned between the upper genital tract containing the developing fetus and the lower tract where infections usually arise. I hypothesise that AMPs are fundamental to mucosal immune defence of the cervix in pregnancy, preventing ascending infection and excessive inflammation that can cause preterm labour. This thesis focused on the human cathelicidin hCAP18/LL-37 and its role within the cervix and vagina. The aims of this thesis were to; investigate the inflammatory effects of LL-37 from cervical and vaginal derived epithelial cells and determine the pathways and receptors in which LL-37 may elicit its effects and how production may be regulated; investigate the role of CRAMP in a mouse model of preterm birth; and determine the production of AMPs by the pregnant cervix whilst investigating the relationship between AMP concentrations in cervicovaginal secretions and preterm labour. The inflammatory effect of LL-37 was investigated using cell lines derived from endocervical, ectocervical and vaginal epithelium. The study of these cell lines suggests divergent responses of cervical and vaginal epithelial cells. LL-37 mediated induction of IL-8 and IL-6 production from endocervical epithelial cells was observed in a dose-dependent and time-dependent manner, whilst ectocervical and vaginal cells also respond to treatment with LL-37 through IL-8 and IL-6 production. To determine a possible mechanism of action of LL-37 on IL-8 and IL-6 in the three cell lines, inhibitors against MAPK cascades, ERK, p38 MAPK and JNK, and known LL-37 receptors were investigated. In endocervical cells LL-37 mediated IL-8 occurs via activation of unidentified GPCRs, whilst in ectocervical cells this effect on IL‐8 and IL-6 is via the activation of ERK and p38 MAPK cascades. The mechanism by which LL-37 induces IL-8 secretion in vaginal epithelial cells remains unknown. Expression of LL-37 was shown to be mediated by vitamin D3 in vitro in cervical and vaginal epithelial cells. However when this relationship was investigated in vivo, using matched serum and cervicovaginal secretions from woman at early pregnancy, no correlation was observed between circulating vitamin D and cervicovaginal or circulating hCAP18/LL-37. However, the majority of women in this study reported with insufficient levels of vitamin D, which may effect the relationship observed with hCAP18/LL-37. Using a mouse model of LPS-induced preterm labour, to mimic the presence of intrauterine infection bacterial infection, I aimed to characterise the role of CRAMP, the mouse orthologue of hCAP18/LL-37, in the lower inflammatory and immune response that results in preterm labour. Wild type C57Bl/6J mice receiving an intrauterine injection of LPS deliver prematurely, within 24 hours of injection. However mice deficient in CRAMP (Camp -/-) receiving an intrauterine injection of LPS deliver significantly later and have a non-significant increase in pup survival compared to wild type C57Bl/6J mice. Cervical tissue collected post partum showed no difference in inflammatory markers between wild type C57Bl/6J and Camp -/- mice, however there was increased expression of the neutrophil chemoattractant marker, Cxcl5, and the neutrophil marker, Ngp in Camp -/- mice. In the lower genital tract, levels of antimicrobial peptides were determined in samples of cervicovaginal secretions collected from pregnant women. AMPs, hCAP18/LL-37, HBD-2 and SLPI were found in cervicovaginal secretions, and levels of hCAP18/LL-37 were increased in women with the common vaginal infection bacterial vaginosis. However no relationship was identified between the concentration of AMPs and preterm birth in this study. This work has shown that the lower genital tract, where infections that are associated with preterm labour originate, expresses the human cathelicidin hCAP18/LL-37. It may play an important role in modulating the immune response to invading infection associated with preterm labour. Further investigation of these responses may increase understanding of the physiology and pathophysiology of labour, and lead to strategies for the prevention of premature delivery.
7

Venom Peptides Cathelicidin and Lycotoxin Cause Strong Inhibition of Escherichia coli ATP Synthase

Azim, Sofiya, McDowell, Derek, Cartagena, Alec, Rodriguez, Ricky, Laughlin, Thomas F., Ahmad, Zulfiqar 01 June 2016 (has links)
Venom peptides are known to have strong antimicrobial activity and anticancer properties. King cobra cathelicidin or OH-CATH (KF-34), banded krait cathelicidin (BF-30), wolf spider lycotoxin I (IL-25), and wolf spider lycotoxin II (KE-27) venom peptides were found to strongly inhibit Escherichia coli membrane bound F1Fo ATP synthase. The potent inhibition of wild-type E. coli in comparison to the partial inhibition of null E. coli by KF-34, BF-30, Il-25, or KE-27 clearly links the bactericidal properties of these venom peptides to the binding and inhibition of ATP synthase along with the possibility of other inhibitory targets. The four venom peptides KF-34, BF-30, IL-25, and KE-27, caused ≥85% inhibition of wild-type membrane bound E.coli ATP synthase. Venom peptide induced inhibition of ATP synthase and the strong abrogation of wild-type E. coli cell growth in the presence of venom peptides demonstrates that ATP synthase is a potent membrane bound molecular target for venom peptides. Furthermore, the process of inhibition was found to be fully reversible.
8

Cereal Induced Autoimmune Diabetes is Associated with Small Intestinal Inflammation, Downregulated Anti-Inflammatory Innate Immunity and Impaired Pancreatic Homeostasis

Patrick, Christopher January 2014 (has links)
Background: Intestinal inflammation elicited by environmental determinants including dietary proteins and microbes is implicated in type 1 diabetes (T1D) pathogenesis. Also, intrinsic pancreatic abnormalities could precede classic insulitis, contributing to T1D. Materials and Methods: Spontaneous rat T1D models were used for in situ analyses of gut and pancreas to explore novel disease pathways using immunohistochemistry and detailed morphometry, gene expression studies, and molecular screening analyses. Results: In BBdp rats, feeding a cereal diet stimulated T1D under germ-free or specific pathogen-free (SPF) conditions compared with a protective hydrolyzed casein (HC) diet. Cereal-induced T1D was paralleled by increased gut T cell infiltration and TH1-associated pro-inflammatory transcription. HC-fed rats displayed an increased number of anti-inflammatory CD163+ M2 macrophages compared with cereal-fed rats. Cereal-associated promotion of T1D in Lewis diabetes-prone (LEW-DP) rats, a different rat model, similarly featured gut T cell infiltration in conjunction with decreased immunoregulation. The Camp gene was induced in diet-protected HC-fed BBdp rats. Camp encodes the cathelicidin antimicrobial peptide (CAMP), a pleiotropic immunomodulatory host defence factor. Intestinal CAMP was enriched in CD163+ M2 macrophages and could represent a novel marker of these tolerogenic innate immune cells. CAMP expression was also discovered in pancreatic lymph nodes (PLN) and islets, indicating a novel role for this factor in target tissue homeostasis. There was a positive correlation between pancreatic CAMP and total islet number. Also, islet-associated CAMP+ cells were increased in rats with islet inflammation, suggesting upregulation in parallel with insulitis. Exogenous CAMP/LL-37 injections increased the abundance of T1D-protective probiotic bacteria and promoted islet neogenesis in BBdp rats. A prospective partial pancreatectomy (PPx) study was performed to obtain pre-diabetic pancreas biopsies from iii pre-insulitic BBdp rats. The number of endothelium-associated CD68+ macrophages was increased in pre-diabetic pancreata, indicating that perivascular inflammation was an early lesion in the animals. In addition, pre-diabetic pancreata featured enhanced regenerative Reg3a and Reg3b gene expression, indicating abnormal islet expansion preceding insulitis. Conclusions: Small intestinal inflammation paired with deficits in local immunoregulation parallels T1D development. CAMP represents a novel factor in T1D that could have several pleiotropic functions including regulation of commensal microbes, intestinal homeostasis, and pancreatic homeostasis. In addition, target tissue abnormalities precede insulitis and T1D. This research focused on the integrative biology of T1D pathogenesis in spontaneous rat models. This work provides a novel working model that incorporates key roles for gut lumen antigens, intestinal immunity, and the role of islets and altered regenerative capacity in T1D. This research could lead to new therapeutic opportunities for T1D treatment.

Page generated in 0.049 seconds