1 |
Mutations de la voie ATR-CHK1, réponse au stress réplicatif et cancer / Mutations in the ATR-CHK1 pathway, replication stress response and cancerEgger, Tom 29 November 2018 (has links)
Le cancer colorectal est responsable de plus de 17500 décès par an et se situe à la 3ème place des cancers les plus fréquents en France. En altérant le processus de réplication de l’ADN des cellules cancéreuses, certaines des molécules utilisées en chimiothérapie induisent du stress réplicatif. Au niveau cellulaire, ce stress est géré par la voie ATR-CHK1. Quand elle est activée par des régions d’ADN simple brin protégées par RPA au niveau de fourches de réplication ralenties/bloquées, ATR déclenche l’activation du checkpoint intra-S via la phosphorylation de son effecteur CHK1. Ce checkpoint permet alors aux cellules de gérer ce stress réplicatif, via différents processus (arrêt du cycle cellulaire, régulation de l’allumage d’origines de réplication, stabilisation des fourches…). Depuis quelques années, l’intérêt thérapeutique de cibler cette voie est clairement établi dans la littérature. Ce rationnel thérapeutique repose sur une inhibition pharmacologique de la voie ATR-CHK1, éventuellement couplée à des traitements par des molécules génotoxiques. Par ailleurs, certaines tumeurs présentent fréquemment des mutations hétérozygotes des gènes ATR et CHK1. Nous avons émis l’hypothèse que ces déficiences puissent représenter leur talon d’Achille. L’équipe a généré un modèle cellulaire permettant d’étudier spécifiquement ces mutations hétérozygotes d’ATR et CHK1. Nous avons commencé notre étude par la caractérisation des impacts de ces mutations en conditions normales de culture. Nos données montrent que les mutations d’ATR et CHK1 altèrent l’activation basale du checkpoint intra-S, provoquent un stress réplicatif endogène, et aboutissent à une induction de dommages de l’ADN. Par ailleurs, ces mutations sensibilisent les cellules à certaines drogues. Entre autres, les cellules mutantes présentent des sensibilités cytotoxiques accrues au SN-38 (principe actif de l’Irinotécan, inhibiteur de topoisomérase 1) et au VE-822 (inhibiteur d’ATR). De plus, nous avons montré que ces deux composés ont un effet synergique important, et nous avons par la suite étudié les mécanismes moléculaires sous-jacents à ces phénotypes de sensibilisation et de synergie. Nos résultats démontrent que la combinaison SN-38+VE-822 entraîne une apoptose dépendante de la caspase-3, exacerbée chez les cellules mutantes ATR ou CHK1. Ces altérations génétiques limitent le potentiel d’activation du checkpoint intra-S et aboutissent à une accumulation de dommages de l’ADN. L’inhibition d’ATR par le VE-822 permet aux cellules de court-circuiter l’arrêt du cycle cellulaire en S-précoce normalement induit par le SN-38. Nos analyses démontrent que ce phénotype entraine un épuisement de RPA et une catastrophe réplicative subséquente, la mutation d’ATR prédisposant les cellules à ces phénotypes. Les cellules survivant à la combinaison SN-38+VE-822 complètent la réplication et s’accumulent en G2 de façon DNA-PK-dépendante. Ce checkpoint post-réplicatif protège les cellules de la catastrophe mitotique. Ensemble, ces observations suggèrent que RPA et DNA-PK représentent des cibles thérapeutiques prometteuses pour optimiser les effets de l’inhibition de la voie ATR-CHK1. En définitive, les mutations d’ATR et CHK1 retrouvées chez les patients pourraient représenter des facteurs pronostiques importants de la réponse à ces stratégies thérapeutiques. De plus, certains de nos résultats suggèrent également une implication de la voie ATR-CHK1 dans la régulation du remodelage des fourches de réplication, notamment dans la résection de l’ADN néo-synthétisé. En affinant la compréhension des processus moléculaires impliqués dans la réponse au stress réplicatif, notre étude pourrait contribuer à l’amélioration de la prise en charge thérapeutique du cancer colorectal. / Colorectal cancer is responsible for more than 17,500 deaths per year and ranks third among the most frequent cancers in France. By interfering with the DNA replication process of cancer cells, several chemotherapeutic molecules induce replication stress. At the cellular level, this stress is managed by the ATR-CHK1 pathway. When activated by RPA-protected single-stranded DNA regions at slowed/blocked replication forks, ATR triggers the activation of the intra-S checkpoint via the phosphorylation of its CHK1 effector. This checkpoint then allows the cells to manage this replicative stress, via different processes (stopping the cell cycle, regulating the ignition of replication origins, stabilizing the forks...). In recent years, the therapeutic value of targeting this pathway has been clearly established in the literature. This therapeutic rationale is founded on pharmacological inhibition of the ATR-CHK1 pathway, possibly coupled with genotoxic molecules treatments. In addition, some tumours frequently have heterozygous mutations of the ATR and CHK1 genes. We have hypothesized that these deficiencies may represent their Achilles' heel. Our team generated a cellular model to specifically study these heterozygous mutations of ATR and CHK1. We began our study by characterizing the impacts of these mutations under normal growing conditions. Our data show that the ATR and CHK1 mutations alter the basal activity of the intra-S checkpoint, cause endogenous replicative stress, and lead to spontaneous DNA damage. In addition, these mutations sensitize the cells to certain drugs. Amongst other things, mutant cells show increased cytotoxic sensitivities to SN-38 (active ingredient of Irinotecan, topoisomerase inhibitor 1) and to VE-822 (ATR inhibitor). Furthermore, we showed that these two compounds have a strong synergistic. We then studied the underlying molecular mechanisms to these sensitization and synergy phenotypes. Our results show that the combination SN-38+VE-822 causes caspase-3-dependent apoptosis, exacerbated in mutant ATR or CHK1 cells. These genetic alterations limit the activation potential of the intra-S checkpoint and lead to extensive DNA damages. Inhibition of ATR by VE-822 allows cells to bypass the S- early cell cycle arrest normally induced by SN-38. Our analyses show that this phenotype leads to RPA depletion and subsequent replicative catastrophe, with ATR mutation predisposing cells to these phenotypes. Cells surviving the SN-38+VE-822 combination complete the replication and accumulate to G2 in a DNA-PK-dependent manner. This post-replicative checkpoint protects the cells from mitotic catastrophe. Together, these data suggest that RPA and DNA-PK represent promising therapeutic targets to optimize the effects of inhibition of the ATR-CHK1 pathway. Moreover, some of our results also suggest that the ATR-CHK1 pathway could be involved in the regulation of replication forks' remodeling, particularly in the resection of newly-synthetized DNA. Ultimately, the mutations of ATR and CHK1 found in patients may represent important prognostic factors in the response to these therapeutic strategies. By achieving a better understanding of the molecular processes involved in the response to chemically-induced replication stress, our study could contribute to the improvement of colorectal cancer’s therapeutic management.
|
2 |
Roles of high mobility group AT-hook protein 2 (HMGA2) in human cancersNatarajan, Suchitra January 2013 (has links)
High Mobility Group AT-hook protein 2 (HMGA2) is a non-histone chromatin binding protein expressed in stem cells, cancer cells but not in normal human somatic cells. The presence of HMGA2 in cancer correlates with advanced neoplastic disease and poor prognosis. HMGA2 plays important roles in Base Excision Repair (BER) and at replication forks. HMGA2 is present at mammalian metaphase telomeres and its loss induces chromosomal aberrations. However, the functional role of HMGA2 at telomeres remains elusive. We hypothesized a protective role of HMGA2 that guards telomeres and modulates DNA damage repair signaling pathways. Employing different HMGA2+ human tumor cell models, we investigated the HMGA2-mediated functions that contribute to chemoresistance in glioblastoma (GB).
This study presents a novel interaction of HMGA2 with telomeric protein TRF2 (Telomere Repeat-Binding Factor 2). This interaction retains TRF2 at telomeres, thus capping the telomeres and reducing telomere-dysfunction induced foci despite induced telomere stress. Loss of HMGA2 coincides with increased phosphorylation of TRF2, decreased TRF2 retention at telomeres and increased formation of telomeric aggregates, anaphase bridges and micronuclei. These findings provide new evidence for a unique role of HMGA2 at telomeres as a novel contributor of telomeric integrity. We show that upon DNA damage, HMGA2 causes increased and sustained phosphorylation of Ataxia Telangiectasia and Rad3-related kinase (ATR) and checkpoint kinase 1 (CHK1). Prolonged presence of pCHK1Ser296 coincides with prolonged G2/M block and increased tumor cell survival. The relationship between (ATR)-CHK1 DNA damage response pathway and HMGA2 identifies a novel mechanism by which HMGA2 can alter DNA repair function in cancer cells.
We identified HMGA2 as a novel factor contributing to temozolomide (TMZ) resistance in GB. HMGA2 knockdown sensitizes the GB cells to TMZ. We propose a specific combination of FDA-approved drugs, TMZ and Dovitinib (DOV), to increase GB cell death. We show that DOV downregulates key BER proteins, attenuates pSTAT3-coordinated Lin28A and HMGA2 expression. Our results suggest that a sequential therapeutic strategy of pretreating GB cells with DOV followed by a sequence of TMZ and DOV diminishes TMZ resistance and enhances the ability of TMZ to induce GB cell death.
Overall, we identified HMGA2 as a multifunctional survival factor in human cancer cells and showed that targeting HMGA2 is a valid strategy to combat HMGA2+ cancer cells. / February 2016
|
3 |
BRCA1, Kap1 and the DNA Damage ResponseKienan Savage Unknown Date (has links)
Cancer cells exhibit genomic instability and are commonly defective in DNA damage signalling and/or DNA repair. There are many types of DNA damage inducing agents such as mechanical stress on chromosomes during recombination, chemotherapeutics, ionising and ultraviolet radiation and endogenously produced free radicals. These genetic lesions pose a serious threat to the cell and evoke a rapid and intricate DNA damage response signalling pathway involving many transducer and effector pathways including cell cycle arrest, DNA repair, chromatin remodelling, and apoptotic pathways. Genetic mutations within genes in this pathway often lead to genomic instability and cancer. The main effectors of the DNA damage response are the protein kinases ATM and ATR which are rapidly activated in response to DNA damage induction and phosphorylate a large and diverse number of targets including the checkpoint kinases Chk1, and Chk2, the tumour suppressors p53 and BRCA1 and chromatin associated proteins such as H2AX. BRCA1 is a key transducer molecule within the DNA damage response. This is evident from its loss, which leads to defects in many damage response processes such as cell cycle arrest and DNA repair. BRCA1s binding partner BARD1 has also been implicated in the DNA damage response and recent reports indicate that these proteins co-operate in this pathway. This study utilises a multifaceted approach to further characterise the function of the BRCA1/BARD1 complex within the DNA damage response. Firstly we have used shRNA to deplete the BRCA1/BARD1 complex and have shown that the BRCA1/BARD1 complex is required for ATM/ATR dependent phosphorylation of p53Ser-15 in response to IR and UV induced DNA damage. In contrast, we have shown that the phosphorylation of a number of other ATM/ATR dependent targets including H2AX, Chk2, and c-jun do not require the BRCA1/BARD1 complex. The study has also revealed that the prior phosphorylation of BRCA1 at Ser-1423 and Ser-1524 is required for the phosphorylation of p53 at Ser-15. Furthermore, we have shown that these phosphorylation events are required for IR induced G1/S cell cycle arrest via transcriptional induction of the cyclin dependent kinase inhibitor p21. The second part of this study involved the characterisation of a putative BRCA1 interacting protein – The KRAB associated protein 1 (Kap1). During this study we have been unable to confirm Kap1 as a bona fide BRCA1 interactor, however we have identified a clear role for Kap1 in the DNA damage response pathway. Using Mass spectrometric phospho amino acid mapping we have identified a novel Chk2 dependent phosphorylation site, Ser-473, within Kap1. Furthermore, we have shown that this phosphorylation event may regulate Histone H3-Lys-9 acetylation after DNA damage possibly regulating chromatin relaxation. This study has also identified a number of novel Kap1 interacting proteins, which appear to be regulated by Kap1 phosphorylation at Ser-473. These interactors may play an important role in the regulation of chromatin modification and/or structure after DNA damage. By studying the role of BRCA1 in the DNA damage response pathway we have not only uncovered a novel scaffolding function for BRCA1 in the G1/S checkpoint but have also identified a novel protein, Kap1, acting within the DNA damage response pathway. This study has identified a role for Kap-1 in the regulation of chromatin structure in response to DNA damage via the ATM – Chk2 pathway.
|
4 |
BRCA1, Kap1 and the DNA Damage ResponseKienan Savage Unknown Date (has links)
Cancer cells exhibit genomic instability and are commonly defective in DNA damage signalling and/or DNA repair. There are many types of DNA damage inducing agents such as mechanical stress on chromosomes during recombination, chemotherapeutics, ionising and ultraviolet radiation and endogenously produced free radicals. These genetic lesions pose a serious threat to the cell and evoke a rapid and intricate DNA damage response signalling pathway involving many transducer and effector pathways including cell cycle arrest, DNA repair, chromatin remodelling, and apoptotic pathways. Genetic mutations within genes in this pathway often lead to genomic instability and cancer. The main effectors of the DNA damage response are the protein kinases ATM and ATR which are rapidly activated in response to DNA damage induction and phosphorylate a large and diverse number of targets including the checkpoint kinases Chk1, and Chk2, the tumour suppressors p53 and BRCA1 and chromatin associated proteins such as H2AX. BRCA1 is a key transducer molecule within the DNA damage response. This is evident from its loss, which leads to defects in many damage response processes such as cell cycle arrest and DNA repair. BRCA1s binding partner BARD1 has also been implicated in the DNA damage response and recent reports indicate that these proteins co-operate in this pathway. This study utilises a multifaceted approach to further characterise the function of the BRCA1/BARD1 complex within the DNA damage response. Firstly we have used shRNA to deplete the BRCA1/BARD1 complex and have shown that the BRCA1/BARD1 complex is required for ATM/ATR dependent phosphorylation of p53Ser-15 in response to IR and UV induced DNA damage. In contrast, we have shown that the phosphorylation of a number of other ATM/ATR dependent targets including H2AX, Chk2, and c-jun do not require the BRCA1/BARD1 complex. The study has also revealed that the prior phosphorylation of BRCA1 at Ser-1423 and Ser-1524 is required for the phosphorylation of p53 at Ser-15. Furthermore, we have shown that these phosphorylation events are required for IR induced G1/S cell cycle arrest via transcriptional induction of the cyclin dependent kinase inhibitor p21. The second part of this study involved the characterisation of a putative BRCA1 interacting protein – The KRAB associated protein 1 (Kap1). During this study we have been unable to confirm Kap1 as a bona fide BRCA1 interactor, however we have identified a clear role for Kap1 in the DNA damage response pathway. Using Mass spectrometric phospho amino acid mapping we have identified a novel Chk2 dependent phosphorylation site, Ser-473, within Kap1. Furthermore, we have shown that this phosphorylation event may regulate Histone H3-Lys-9 acetylation after DNA damage possibly regulating chromatin relaxation. This study has also identified a number of novel Kap1 interacting proteins, which appear to be regulated by Kap1 phosphorylation at Ser-473. These interactors may play an important role in the regulation of chromatin modification and/or structure after DNA damage. By studying the role of BRCA1 in the DNA damage response pathway we have not only uncovered a novel scaffolding function for BRCA1 in the G1/S checkpoint but have also identified a novel protein, Kap1, acting within the DNA damage response pathway. This study has identified a role for Kap-1 in the regulation of chromatin structure in response to DNA damage via the ATM – Chk2 pathway.
|
5 |
BRCA1, Kap1 and the DNA Damage ResponseKienan Savage Unknown Date (has links)
Cancer cells exhibit genomic instability and are commonly defective in DNA damage signalling and/or DNA repair. There are many types of DNA damage inducing agents such as mechanical stress on chromosomes during recombination, chemotherapeutics, ionising and ultraviolet radiation and endogenously produced free radicals. These genetic lesions pose a serious threat to the cell and evoke a rapid and intricate DNA damage response signalling pathway involving many transducer and effector pathways including cell cycle arrest, DNA repair, chromatin remodelling, and apoptotic pathways. Genetic mutations within genes in this pathway often lead to genomic instability and cancer. The main effectors of the DNA damage response are the protein kinases ATM and ATR which are rapidly activated in response to DNA damage induction and phosphorylate a large and diverse number of targets including the checkpoint kinases Chk1, and Chk2, the tumour suppressors p53 and BRCA1 and chromatin associated proteins such as H2AX. BRCA1 is a key transducer molecule within the DNA damage response. This is evident from its loss, which leads to defects in many damage response processes such as cell cycle arrest and DNA repair. BRCA1s binding partner BARD1 has also been implicated in the DNA damage response and recent reports indicate that these proteins co-operate in this pathway. This study utilises a multifaceted approach to further characterise the function of the BRCA1/BARD1 complex within the DNA damage response. Firstly we have used shRNA to deplete the BRCA1/BARD1 complex and have shown that the BRCA1/BARD1 complex is required for ATM/ATR dependent phosphorylation of p53Ser-15 in response to IR and UV induced DNA damage. In contrast, we have shown that the phosphorylation of a number of other ATM/ATR dependent targets including H2AX, Chk2, and c-jun do not require the BRCA1/BARD1 complex. The study has also revealed that the prior phosphorylation of BRCA1 at Ser-1423 and Ser-1524 is required for the phosphorylation of p53 at Ser-15. Furthermore, we have shown that these phosphorylation events are required for IR induced G1/S cell cycle arrest via transcriptional induction of the cyclin dependent kinase inhibitor p21. The second part of this study involved the characterisation of a putative BRCA1 interacting protein – The KRAB associated protein 1 (Kap1). During this study we have been unable to confirm Kap1 as a bona fide BRCA1 interactor, however we have identified a clear role for Kap1 in the DNA damage response pathway. Using Mass spectrometric phospho amino acid mapping we have identified a novel Chk2 dependent phosphorylation site, Ser-473, within Kap1. Furthermore, we have shown that this phosphorylation event may regulate Histone H3-Lys-9 acetylation after DNA damage possibly regulating chromatin relaxation. This study has also identified a number of novel Kap1 interacting proteins, which appear to be regulated by Kap1 phosphorylation at Ser-473. These interactors may play an important role in the regulation of chromatin modification and/or structure after DNA damage. By studying the role of BRCA1 in the DNA damage response pathway we have not only uncovered a novel scaffolding function for BRCA1 in the G1/S checkpoint but have also identified a novel protein, Kap1, acting within the DNA damage response pathway. This study has identified a role for Kap-1 in the regulation of chromatin structure in response to DNA damage via the ATM – Chk2 pathway.
|
6 |
Rôles de la protéine E4F1 dans le contrôle de la réponse aux dommages de l’ADN dans le cancer du sein triple négatif / Roles of E4F1 protein in the control of the DNA damage response in triple negative breast cancerBatnini, Kalil 25 April 2019 (has links)
La protéine E4F1 découverte comme cible cellulaire de l'oncoprotéine adénovirale E1A est une protéine ubiquitaire agissant comme facteur de transcription et comme E3-ligase atypique. La protéine E4F1 interagit également directement avec plusieurs gènes suppresseurs de tumeurs et des oncoprotéines, suggérant son implication dans la tumorigénèse. Des travaux antérieurs du laboratoire, sur les fonctions cellulaires d’E4F1 dans les cellules cancéreuses ont montré que sa déplétion entraîne une mort cellulaire massive dans les Mefs transformés déficients en p53. De plus, E4F1 contrôle directement l'expression de 38 gènes, notamment impliqués dans le métabolisme cellulaire et les checkpoints du cycle cellulaire/Réponse aux dommages de l'ADN (DDR), tel que Chek1 qui code un composant majeur du checkpoint ATR/ATM. Conformément à ce rôle d’E4F1 dans la survie des cellules cancéreuses chez la souris, des patientes atteintes d'un cancer du sein triple négatif (TNBC) exprimant fortement E4F1 présentent une survie sans rechute (RFS) plus faible.Nous avons donc décidé d’étudier pour la première fois le programme transcriptionnel d’E4F1 dans les cellules humaines et d’explorer son rôle dans la survie des cellules de TNBC, avec une attention particulière pour son rôle dans la réponse aux agents de chimiothérapie.Les transcriptomes (RNAseq) de cellules SUM159 de TNBC montrent, lors de la déplétion d’E4F1, une diminution de l’expression de 147 des 276 gènes associés à la DDR. La combinaison de RNAseq et de ChIPseq révèle qu’E4F1 régule directement 57 gènes dans les cellules de TNBC humaines. Parmi ces gènes, E4F1 lui-même, CHEK1, mais aussi TTI2 et PPP5C codant pour des régulateurs post-transcriptionnels de l'axe ATM/ATR-CHK1, et définissant ainsi un "régulon" ATM/ATR-CHK1, encore inconnu et dépendant d’E4F1. TTI2 forme avec TELO2 et TTI1, le complexe TTT nécessaire au repliement correct et à la stabilité des protéines de la famille PIKK, telles qu’ATR et ATM. La phosphatase PPP5C est impliquée dans l'activation de la signalisation ATR-CHK1. Fait important, nous montrons qu’E4F1 se fixe sur et régule probablement ces trois gènes in vivo dans des tumeurs TNBC dérivées de patientes (PDTX). Dans la lignée SUM159 et les PDTX, le recrutement d’E4F1 sur ces gènes est augmenté lors du traitement avec la Gemcitabine, un agent de chimiothérapie bloquant la réplication de l’ADN. Étonnamment, nous avons révélé qu’E4F1 contrôle aussi indirectement l'expression de TELO2, un second membre du complexe TTT. Par conséquent, dans les cellules TNBC déplétées en E4F1, les taux de protéines des CHK1, TTI2, TELO2 mais aussi des kinases ATM/ATR, sont fortement diminués, entraînant une déficience de la DDR. Ainsi, les cellules SUM159 déplétées en E4F1 ne parviennent pas à s'arrêter en phase S lors du traitement à la Gemcitabine et sont hautement sensibilisées à cet agent de chimiothérapie, ainsi qu'à d'autres agents endommageant l'ADN comme le Cisplatine. Dans leur ensemble, mes travaux de thèse révèlent que la voie de signalisation ATM/ATR-CHK1, et la réponse au stress / dommages de l'ADN sont étroitement contrôlées aux niveaux transcriptionnel et post-transcriptionnel par E4F1. E4F1 apparait donc comme un acteur central dans la survie cellulaire des cellules TNBC, en particulier lorsqu'elles sont exposées à des agents endommageant l'ADN ou à des agents de chimiothérapie. Ainsi E4F1 pourrait représenter un marqueur pronostique de réponse à la chimiothérapie et une cible thérapeutique potentielle. / The E4F1 protein discovered as the cellular target of the adenoviral oncoprotein E1A is a ubiquitous protein acting both as a transcription factor and as an atypical E3-ligase. E4F1 protein also interacts directly with several cellular tumor suppressors and oncoproteins, suggesting its involvement in tumorigenesis. Previous laboratory work on the cellular functions of E4F1 in cancer cells has shown that its depletion leads to massive cell death in transformed Mefs deficient in p53. In addition, E4F1 directly controls the expression of 38 genes, including genes involved in cell metabolism and cell cycle checkpoints/DNA Damage Response (DDR), such as Chek1 that encodes a major component of the ATR/ATM checkpoint. Consistent with this role of E4F1 in cancer cell survival in mice, patients with triple-negative breast cancer (TNBC) with high E4F1 expression exhibit a poorer relapse free survival (RFS).We therefore aimed to study for the first time the transcriptional program of E4F1 in human cells and explore its role in the survival of TNBC cells, with particular focus on its role in the response to chemotherapy agents.Transcriptomes (RNAseq) of SUM159 TNBC cells show, when E4F1 is depleted, a decrease in expression of 147 out of 276 DDR-associated genes. The combination of RNAseq and ChIPseq shows that E4F1 directly regulates 57 genes in human TNBC cells. Among these genes, E4F1 itself, CHEK1, but also TTI2 and PPP5C coding for post-transcriptional regulators of the ATM/ATR-CHK1 axis, and thus defining an ATM/ATR-CHK1 "regulon", undescribed and E4F1-dependent. TTI2 composes with TELO2 and TTI1, the TTT complex required for the correct folding and stability of PIKK family proteins, such as ATR and ATM. PPP5C phosphatase is involved in the activation of ATR-CHK1 signaling. Importantly, we show that E4F1 binds to and probably regulates these three genes in vivo in Patient Derived TNBC Xenografts (PDTX). In both SUM159 cells and PDTX, the recruitment of E4F1 on these genes is increased upon Gemcitabine treatment, a chemotherapy agent that impairs DNA replication. Surprisingly, we found that E4F1 also indirectly controls the expression of TELO2, a second member of the TTT complex. Consequently, in TNBC cells depleted of E4F1, the protein levels of CHK1, TTI2, TELO2 but also ATM/ATR kinases, are significantly decreased, leading to DDR deficiency. Thus, SUM159 cells depleted of E4F1 fail to stop in phase S during Gemcitabine treatment and are highly sensitized to this chemotherapy agent, as well as other DNA damaging agents such as Cisplatin. Altogether, my thesis results demonstrate that the ATM/ATR-CHK1 signaling pathway, and the response to stress / DNA damage are tightly controlled at the transcription and post-transcription levels by E4F1. E4F1 therefore appears to be a central actor in the cellular survival of TNBC cells, particularly when exposed to DNA-damaging agents or chemotherapy agents. Thus, E4F1 could represent a prognostic marker for chemotherapy response and a potential therapeutic target.
|
Page generated in 0.025 seconds