• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 78
  • 9
  • 7
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 226
  • 226
  • 74
  • 72
  • 48
  • 31
  • 27
  • 27
  • 24
  • 24
  • 23
  • 22
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

In vivo, in vitro micropropagation and chemical characterisation of medicinal compounds in chamomile and yarrow species (Asteraceae)

Mahmood, Banaz January 2018 (has links)
The Asteraceae family is frequently used to describe several medicinal plants which contain various phytochemical compounds including phenols, flavonoids and terpenoids. Among the Asteraceae family German chamomile (Matricaria chamomilla L.) and yarrow (Achillea millefolium L.) plants are extant species used in contemporary medicine. These phytochemical compounds have been traditionally used since ancient times in health care systems worldwide as a source of medicines. The use of micropropagation is essential to improve and increase these active compounds via plant tissue culture within a short period of time using the application of key plant growth regulators (PGRs). Furthermore, quantitative and qualitative analysis using high performance liquid chromatography- ultraviolet detector (HPLC-UV) and gas chromatography- flame ionisation detector (GC-FID) of potential medicinal compounds expressed by both chamomile and yarrow are important points. The protocol of in vitro shoots, roots and callus formation of chamomile and yarrow seeds culture were investigated using Murashige and Skoog (MS) medium supplemented with different concentrations of plant growth regulators (PGRs). MS culture medium containing 0.5 mgL-1 IAA and 1.0 mgL-1 of GA3 were found to be the best culture medium for chamomile and yarrow seeds. In this project in vitro and in vivo growth rates of selected plant species were also investigated. In the earlier growth stages yarrow plants were found to grow much quicker than chamomile, while the yield of chamomile flowers was significantly (p ≤ 0.001) more than yarrow flowers. The phenolic, flavonoid and terpenoid compounds content of leaves and flowers of plants produced from both cultures were also studied. HPLC-UV analysis showed that chlorogenic acid, apigenin-7-O-glucoside and luteolin dominated as the main phenol and flavonoid compounds recovered in both in vitro and in vivo chamomile and yarrow cultures. However, GC-FID analysis indicated that farnesene and nerolidol were detected as the main terpenoid compounds present in the two culture conditions used to grow chamomile and yarrow plants. Moreover, this research examines how chamomile and yarrow plants can produce and improve their phytochemical compounds content not only under well-watered conditions but also under drought stress conditions. The main phenol and flavonoid compounds of chlorogenic acid, caffeic acid, apig-7-glucoside, umbelliferon and luteolin were found in chamomile and yarrow varieties grown under both well-watered and drought stress conditions using (HPLC-UV), however farnesene, nerolidol, chamazulene, α-(-)- bisabol and bisabolol oxide A were observed in the plant essential oils (EOs) using Soxhlet extraction and GC-FID analysis. The antibacterial activity of plant EOs was also investigated using disc diffusion and 96 well plates. In vivo chamomile EO showed the highest antibacterial activity against gram-positive and gram-negative bacteria strains. In addition, in vitro yarrow EO showed the greatest effect on the death of bacteria strains.
12

Zirconium-induced physiological and biochemical responses in two genotypes of Brassica napus L.

Braaf, Ryan January 2015 (has links)
>Magister Scientiae - MSc / South Africa is one of two countries responsible for the production of approximately 80% of the world’s Zr. The increase in mining activity has detrimental effects on the environment, especially crop plants, as more pollutants are leached into the soil. Consequently, it is necessary to understand how plants respond to this form of abiotic stress. Therefore, this study focused on determining the physiological and biochemical responses of two genotypes of Brassica napus L (Agamax and Garnet) in response to Zr stress. The levels of cell death, lipid peroxidation and ROS were higher in Garnet, whereas the chlorophyll content was higher in Agamax. Furthermore, native PAGE analysis detected seven SOD isoforms and seven APX isoforms in Agamax, compared to 6 SOD isoforms and 7 APX isoforms in Garnet. The results thus indicate that Agamax is tolerant to Zr-induced stress, whereas Garnet is sensitive. An assay for the rapid quantification of Zr within plant samples was subsequently developed, which revealed that Agamax retained the bulk of the Zr within its roots, whereas Garnet translocated most of the Zr to its leaves. The ability of Agamax to sequester Zr in its roots comes forth as one of the mechanisms which confers greater tolerance to Zr-induced stress. As a consequence, our study sought to use the optical, physical and chemical properties of quantum dots to image the uptake and translocation of Zr in B. napus genotypes. ICPOES was also performed to quantify Zr levels in various plant organs. Data from the ICPOES revealed varying patterns of uptake and translocations between Garnet and Agamax. These patterns were similarly shown in IVIS Lumina images, tracing the transport of QD/Zr conjugates. This method ultimately proved to be successful in tracing the uptake of Zr, and could essentially be a useful tool for targeting and imaging a number of other molecules.
13

Alterations in Fatty Acid Amide Hydrolase (Faah) Transcript Levels and Activity Lead to Changes in the Abiotic Stress Susceptibility of Arabidopsis Thaliana

Gonzalez, Gabriel 05 1900 (has links)
N-Acylethanolamines (NAEs) are a class of bioactive lipids, and FAAH is one of the enzymes responsible for degrading NAEs in both plants and animals. in plants, FAAH appears to be closely associated with ABA, a phytohormone which has long been associated with plant stress responses, since the overexpression of FAAH in Arabidopsis results in ABA hypersensitivity. Therefore, it is reasonable to speculate that alterations in FAAH transcript levels will result in altered stress responses in plants. to investigate this hypothesis experiments were carried out in which wild type (WT), FAAH-overexpressing (OE), and T-DNA insertional FAAH knockouts of Arabidopsis (faah) were grown in MS media under stress conditions. the stress conditions tested included chilling stress, heavy metal stress induced by cadmium or copper, nutrient limitations induced by low phosphorus or low nitrogen, salt stress induced with NaCl, and osmotic stress induced with mannitol. the OE plants were consistently hypersensitive to all stress conditions in relation to wild type plants. Inactive FAAH overexpressors did not have the hypersensitivity to the salt and osmotic stress of the active OE plants and were instead tolerant to these stresses. FAAH2 (faah2) knockouts and FAAH 1 and 2 double knockouts (faah 1+2) were based on some root development parameters somewhat more tolerant than WT plants, but more sensitive in terms of shoot growth. Collectively the data suggests that FAAH activity may interact with stress-responsive pathways in plants, perhaps including pathways involving ABA.
14

A Novel Non-coding RNA Regulates Drought Stress Tolerance in Arabidopsis thaliana

Albesher, Nour H. 05 1900 (has links)
Drought (soil water deficit) as a major adverse environmental condition can result in serious reduction in plant growth and crop production. Plants respond and adapt to drought stresses by triggering various signalling pathways leading to physiological, metabolic and developmental changes that may ultimately contribute to enhanced tolerance to the stress. Here, a novel non-coding RNA (ncRNA) involved in plant drought stress tolerance was identified. We showed that increasing the expression of this ncRNA led to enhanced sensitivity during seed germination and seedling growth to the phytohormone abscisic acid. The mutant seedlings are also more sensitive to osmotic stress inhibition of lateral root growth. Consistently, seedlings with enhanced expression of this ncRNA exhibited reduced transiprational water loss and were more drought-tolerant than the wild type. Future analyses of the mechanism for its role in drought tolerance may help us to understand how plant drought tolerance could be further regulated by this novel ncRNA.
15

The influence of overwatering, underwatering, and waterlogging on the growth of kale (Brassica oleracea var. acephala)

Brazel, Skyler R. 12 May 2023 (has links) (PDF)
The Intergovernmental Panel on Climate Change has predicted that there will be increases in precipitation and heat-induced drought events globally. Information on kale response to waterlogging is minimal. The purpose of this project was to identify the response of kale to three treatments of water stress: underwatering, overwatering, and waterlogging. Plant pigments analyzed displayed a varied response to underwatering and overwatering, with concentrations changing with maturity but with reductions and no changes, respectively, at full harvest maturity. Glucosinolate concentrations were also influenced by maturity and increased under waterlogging and underwatering but no differences with overwatering. Overall, water stress to any degree is not ideal for kale during production, but despite yield reductions, underwatering led to increases among phytonutrients, but increases are apparent and do not equate to increased absorption when consumed.
16

Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef)

Cannarozzi, Gina, Plaza-Wuthrich, Sonia, Esfeld, Korinna, Larti, Stephanie, Wilson, Yi, Girma, Dejene, de Castro, Edouard, Chanyalew, Solomon, Blosch, Regula, Farinelli, Laurent, Lyons, Eric, Schneider, Michel, Falquet, Laurent, Kuhlemeier, Cris, Assefa, Kebebew, Tadele, Zerihun January 2014 (has links)
BACKGROUND:Tef (Eragrostis tef), an indigenous cereal critical to food security in the Horn of Africa, is rich in minerals and protein, resistant to many biotic and abiotic stresses and safe for diabetics as well as sufferers of immune reactions to wheat gluten. We present the genome of tef, the first species in the grass subfamily Chloridoideae and the first allotetraploid assembled de novo. We sequenced the tef genome for marker-assisted breeding, to shed light on the molecular mechanisms conferring tef's desirable nutritional and agronomic properties, and to make its genome publicly available as a community resource.RESULTS:The draft genome contains 672 Mbp representing 87% of the genome size estimated from flow cytometry. We also sequenced two transcriptomes, one from a normalized RNA library and another from unnormalized RNASeq data. The normalized RNA library revealed around 38000 transcripts that were then annotated by the SwissProt group. The CoGe comparative genomics platform was used to compare the tef genome to other genomes, notably sorghum. Scaffolds comprising approximately half of the genome size were ordered by syntenic alignment to sorghum producing tef pseudo-chromosomes, which were sorted into A and B genomes as well as compared to the genetic map of tef. The draft genome was used to identify novel SSR markers, investigate target genes for abiotic stress resistance studies, and understand the evolution of the prolamin family of proteins that are responsible for the immune response to gluten.CONCLUSIONS:It is highly plausible that breeding targets previously identified in other cereal crops will also be valuable breeding targets in tef. The draft genome and transcriptome will be of great use for identifying these targets for genetic improvement of this orphan crop that is vital for feeding 50 million people in the Horn of Africa.
17

Molecular properties of disordered plant dehydrins : Membrane interaction and function in stress

Eriksson, Sylvia January 2016 (has links)
Dehydrins are intrinsically disordered plant stress-proteins. Repetitively in their sequence are some highly conserved stretches of 7-17 residues, the so called K-, S-, Y- and lysine rich segments. This thesis aims to give insight into the possible role dehydrins have in the stressed plant cell with main focus on membrane interaction and protection. The work includes four recombinant dehydrins from the plant Arabidopsis thaliana: Cor47 (SK3), Lti29 (SK3), Lti30 (K6) and Rab18 (Y2SK2). Initially, we mimicked crowded cellular environment in vitro to verify that dehydrins are truly disordered proteins. Thereafter, the proposal that the compulsory K-segment determines membrane binding was tested. Experiments show that only Lti30 and Rab18 bind, whereas Cor47 and Lti29 does not. As Lti30 and Rab18 binds they assembles vesicles into clusters in vitro, a feature used to characterize the interaction. From this it was shown that membrane binding of Lti30 is electrostatic and determined by global as well as local charges. Protonation of histidine pairs flanking the K-segments works as an on/off-binding switch. By NMR studies it was shown that the K-segments form a dynamic α-helix upon binding, so called disorder-to-order behaviour. Also, dehydrins electrostatic interaction with lipids can be further tuned by posttranslational phosphorylation or coordination of calcium and zinc ions. Finally, specific binding of Rab18 to inositol lipids, mainly PI(4,5)P2, is reported. The interaction is mainly coordinated by two arginines neighboring one of the K-segments. In conclusion, the K-segments are indeed involved in the binding of dehydrins to membrane but only in combination with extensions (Lti30) or modified (Rab18). / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.</p>
18

Regulace metabolismu cytokininů v rostlinách a chloroplastech tabáku / Regulation of cytokinin metabolism in tobacco plants and chloroplasts

Havlová, Marie January 2011 (has links)
Cytokinins (CKs) are one of the most important group of phytohormones influencing many processes throughout the whole plant. As many processes are regulated both by the light and phytohormones, the first part of this work has been focused on evaluation of diurnal rhytmicity in levels of cytokinins and other cooperating hormones like auxin (indol-3-acetic acid, IAA), abscisic acid (ABA) and polyamines (PA). The changes in activity of selected enzymes participating in metabolism of the above mentioned phytohormones were followed as well. Diurnal variation of phytohormones was tested in tobacco leaves (Nicotiana tabacum L. cv. Wisconsin 38) grown under a 16/8 h (light/dark) period. The main peak of the physiologically active forms of CKs, found after the middle of the light period, coincided well with the maximum of IAA and PA levels and with activity of the corresponding enzymes. The achieved data indicate that metabolism of CKs, IAA and PAs is tightly regulated by the circadian clock. The other part of the study has been focused on changes in the contents of CKs, IAA and ABA in transgenic tobacco plants with altered cytokinin metabolism, achieved via the over-expression of particular enzymes participating in CK metabolism (biosynthesis, degradation and reversible conjugation). As CKs are known to be...
19

Abiotic stress tolerance from the tertiary gene pool of common wheat

Green, Andrew Justin January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Allan K. Fritz / Heat and drought stress are two of the most significant abiotic stresses limiting wheat production in the Great Plains and worldwide. Introgression of novel tolerance genes from wild relatives is a strategy which presents promise. This study examined both heat and drought tolerance from the tetraploid species Aegilops geniculata (U[superscript g]U[superscript g]M[superscript g]M[superscript g]). Additional screening for heat tolerance was conducted with the US genome species Aegilops peregrina (Hack) and Aegilops kotschyi (Boiss). A comprehensive screening system for drought tolerance was also constructed to evaluate wheat and its wild relatives. Previous reports suggested that Ae. geniculata accession TA2899 was moderately tolerant to heat stress. It had also previously been used to develop a full set of wheat-Ae. geniculata chromosome addition lines in a Chinese Spring background. To identify the chromosome(s) carrying the heat tolerance, all addition lines, as well as wheat check genotypes, were screened for post-anthesis heat tolerance in two growth chamber experiments. No chromosome addition lines were significantly different (p<0.05) from Chinese Spring, and none were found to have superior performance to the positive check cultivars. Forty-five accessions of Ae. peregrina and its close relative, Ae. kotschyi were screened in a post-anthesis heat experiment. A follow-up experiment compared the genotypes in a split-plot temperature treatment with heat and optimal growth chambers. Many accessions were similar to the control genotypes for grain fill duration, and some exceeded the wheat controls for relative chlorophyll index values on Day 12 and Day 16. TA1889 and TA1904, both Ae. peregrina accessions originating from Israel, had a higher grain fill duration across experiments than the best wheat control, and warrant further investigation. Previous reports suggested drought tolerance in Ae. geniculata. After preliminary screenings, six genotypes were selected for advanced screening and compared with three wheat cultivars. The advanced greenhouse screening system was conducted in 152cm tall PVC growth tubes. The experiment measured multiple plant responses, and had a datalogging system automatically collecting water content and matric potential of the growth media. Multiple accessions warranted further investigation, and showed potentially different modes of drought tolerance, with varying levels of stomatal resistance, biomass, and osmotic adjustment.
20

Investigation of the role of AtNOGC1, a guanylyl cyclase protein in response to abiotic and biotic stress

Muthevhuli, Mpho January 2018 (has links)
>Magister Scientiae - MSc / Agricultural production is one of the most important sectors which provide food for the growing world population which is estimated to reach 9.7 billion by 2050, thus there is a need to produce more food. Climate change, on the other hand, is negatively affecting major global crops such as maize, sorghum, wheat and barley. Environmental factors such as salinity, drought, high temperatures and pathogens affect plant production by oxidatively damaging the physiological processes in plants, leading to plant death. Poor irrigation used to combat drought result in salinasation, which is estimated to affect 50% of arable land by 2050. Plants have developed several mechanisms that protect them against stress and these include overexpression of stress responsive genes and altered signal transduction to change the expression of stress responsive genes, among others. Cyclic 3’5’ guanosine monophosphate (cGMP), a second messenger that is synthesised by guanylyl cyclase (GC), transmit signals to various cellular functions in plants during plant development, growth and response to abiotic and biotic stresses. Arabidopsis thaliana nitric oxide guanylyl cyclase 1 (AtNOGC1) is a guanylyl cyclase which upon activation by nitric oxide (NO) leads to the production of more cGMP. Cyclic GMP further activates protein kinases, ion gated channels and phosphodiesterase which mediate response to various stresses. In this project the role of AtNOGC1 was investigated in response to abiotic and biotic stresses through analysis of its evolutionary relationships, promoter, gene expression and functional analysis via the viability assays in Escherichia coli (E.coli). Phylogenetic tree, exon-intron structure and conserved motifs were analysed using the Molecular Evolutionary Genetics Analysis (MEGA V.7), Gene Structure Display Server 2.0 (GSDS 2.0), and Multiple Expectation Maximisation for Motif Elicitation (MEME) tools respectively. AtNOGC1’s gene expression was analysed by the Real-Time Quantitative Reverse Transcription Polymerase Reaction (qRT-PCR), whereas functional analysis was carried out using the cell viability (liquid and spot) assays to determine its ability to confer stress tolerance to E. coli.

Page generated in 0.0461 seconds