• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Prosthesis for Above-Knee Amputee Runners

Irwin, Barton 08 1900 (has links)
Although a number of above-knee amputees have expressed a desire to participate in recreational activities involving running, no currently available lower limb prosthesis has proven adequate in allowing amputees to achieve a natural, efficient, one-to-one running gait. Until recently, amputee runners such as Terry Fox and Steve Fonyo have adopted a variety of asymmetrical gaits, although the Terry Fox Jogging Prosthesis has allowed some amputees to achieve an inefficient one-to-one running pattern. The objective is to design a conservative running prosthesis which will functionally imitate the intact limb during running activities. The prosthesis performance criteria were established for both stance and swing, based on an examination of non-amputee running biomechanics. The prosthesis incorporates a shank unit assembly which linearly compresses upon heel-strike, absorbing the impact energies in a helical coil compression spring, and then uses a ratchet device to store these impact energies throughout the stance phase. In late stance, the natural dorsi flexion of the prosthetic foot initiates the release of the stored energies, propelling the amputee upward and forward into the swing phase. It is recommended that a comprehensive biomechanical gait analysis be performed on the prosthesis' operation to allow for optimization of its configuration and performance. In conclusion, the features of this prosthesis will allow above-knee amputees to achieve a more natural, one-to-one running gait and participate more actively in activities involving running. / Thesis / Master of Engineering (ME)
2

Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system

Abdulhasan, Zahraa M., Scally, Andy J., Buckley, John 30 May 2018 (has links)
Yes / Walking down ramps is a demanding task for transfemoral-amputees and terminating gait on ramps is even more challenging because of the requirement to maintain a stable limb so that it can do the necessary negative mechanical work on the centre-of-mass in order to arrest (dissipate) forward/downward velocity. We determined how the use of a microprocessor-controlled limb system (simultaneous control over hydraulic resistances at ankle and knee) affected the negative mechanical work done by each limb when transfemoral-amputees terminated gait during ramp descent. Methods: Eight transfemoral-amputees completed planned gait terminations (stopping on prosthesis) on a 5-degree ramp from slow and customary walking speeds, with the limb's microprocessor active or inactive. When active the limb operated in its ‘ramp-descent’ mode and when inactive the knee and ankle devices functioned at constant default levels. Negative limb work, determined as the integral of the negative mechanical (external) limb power during the braking phase, was compared across speeds and microprocessor conditions. Findings: Negative work done by each limb increased with speed (p < 0.001), and on the prosthetic limb it was greater when the microprocessor was active compared to inactive (p = 0.004). There was no change in work done across microprocessor conditions on the intact limb (p = 0.35). Interpretation: Greater involvement of the prosthetic limb when the limb system was active indicates its ramp-descent mode effectively altered the hydraulic resistances at the ankle and knee. Findings highlight participants became more assured using their prosthetic limb to arrest centre-of-mass velocity. / ZA is funded by the Higher Committee of Education Development in IRAQ (HCED student number D13 626).
3

Impact of combined microprocessor control of the prosthetic knee and ankle on gait termination in unilateral trans-femoral amputees. Limb mechanical work performed on centre of mass to terminate gait on a declined surface using linx prosthetic device

Abdulhasan, Zahraa M. January 2018 (has links)
The major objective of this thesis was to investigate how the use of a recently developed microprocessor-controlled limb system altered the negative mechanical work done by the intact and prosthetic limb when trans-femoral amputees terminated gait. Participants terminated gait on a level surface from their self-selected walking speed and on declined surface from slow and customary speeds, using limb system prosthesis with microprocessor active or inactive. Limb negative work, determined as the integral of the negative mechanical (external) limb power during the braking phase, was compared across surface, speed and microprocessor conditions. Halting gait was achieved predominantly from negative work done by the trailing/intact. Trailing versus leading limb mechanical work imbalance was similar to how able body individuals halted gait. Importantly, the negative limb work performed on the prosthetic side when terminating gait on declined surface was increased when the microprocessor was active for both slow and customary speeds (no difference on level surface) but no change on intact limb. This indicates the limb system’s ‘ramp-descent mode’ effectively/dynamically altered the hydraulic resistances at the respective joints with evidence indicating changes at the ankle were the key factor for increasing the prosthetic limb negative work contribution. Findings suggest that trans-femoral amputees became more assured using their prosthetic limb to arrest body centre of mass velocity when the limb system’s microprocessor was active. More generally findings suggest, trans-femoral amputees should obtain clinically significant biomechanical benefits from using a limb system prosthesis for locomotion involving adapting to their everyday walking where adaptations to an endlessly changing environment are required. / Higher Committee of Education Development in IRAQ (HCED)
4

Compliant pediatric prosthetic knee

Mahler, Sebastian 01 June 2007 (has links)
We have designed and examined a compliant knee mechanism that may offer solutions to problems that exist for infants and toddlers who are just learning to walk. Pediatric prosthetic knees on the market today are not well designed for infants and toddlers for various reasons. Children at this age need a prosthetic that is light in weight, durable, and stable during stance. Of the eleven knees on the market for children, all but three are polycentric or four-bar knees, meaning they have multiple points of movement. Polycentric knees are popular designs because they offer the added benefit of stable stance control and increased toe clearance, unfortunately this type of knee is often too heavy for young children to wear comfortably and is not well suited for harsh environments such as sand or water, common places children like to play. The remaining three knees do not offer a stance control feature and are equally vulnerable to harsh environments due to ball bearing hinges. Compliant mechanisms offer several design advantages that may make them suitable in pediatric prosthetic knees -- light weight, less susceptible to harsh environments, polycentric capable, low part count, etc. Unfortunately, they present new challenges that must be dealt with individually. For example compliant mechanisms are typically not well suited in applications that need adjustability. This problem was solved by mixing compliant mechanism design with traditional mechanism design methods. This paper presents a preliminary design concept for a compliant pediatric prosthetic knee. The carbon fiber composite spring steel design was first built and then evaluated using Finite Element Analysis. The prototype's instant center was plotted using the graphical method. From our analysis position, force and stress information was gathered for a deflection up to 120 degrees. The instant centers that were plotted indicate that the knee has good potential in offering adequate stability during stance.
5

Simulation and Control at the Boundaries Between Humans and Assistive Robots

Warner, Holly E. January 2019 (has links)
No description available.

Page generated in 0.0347 seconds