• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 20
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 138
  • 138
  • 31
  • 28
  • 26
  • 20
  • 19
  • 19
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Hormone metabolism and action in developing pea fruit

Nadeau, Courtney 11 1900 (has links)
The developmental programs of maturing seed and fruit in pea (Pisum sativum L.) are tightly controlled by the interactions of several phytohormones, including gibberellins (GAs), auxins, and abscisic acid (ABA). To more fully understand these hormone networks and their roles in controlling development, transcription profiles of GA metabolism genes and metabolite profiles of key GAs, auxins, and ABA were determined in developing seeds, and histological studies were employed to correlate physiology and hormone metabolism. Data suggest that bioactive GA stimulates several aspects of seed growth, and ABA appears to promote bioactive GA1 synthesis in rapidly growing seed coats, and inhibit GA biosynthesis in the embryo axes of maturing embryos. Two putative auxin receptor genes were cloned, and their transcription profiles examined in developing seed and pericarp tissues. Pericarp PsAFB6A transcription was responsive to auxin and seed signals, indicating a potential role for the modulation of auxin sensitivity in fruit development.
32

Photocontrol of seed germination in arable land

Scopel, Ana L. 23 July 1993 (has links)
Graduation date: 1994
33

Identification of abscisic acid-binding proteins using a bioactive photoaffinity probe

Galka, Marek Michal 15 September 2009
This project was expected to contribute to the understanding of abscisic acid (ABA) perception in plants through identification of new ABA-binding proteins. The novel, biotinylated ABA derivative PBI686 (of biological activity comparable to natural ABA) has served as an affinity probe for isolation of ABA-binding proteins. Photoaffinity labeling in conjunction with affinity chromatography (streptavidin-biotin based) was used for specific identification of target proteins from complex mixtures of cytosolic and membrane-bound proteins. Proteins of interest were identified by Mass Spectrometry through peptide mass fingerprinting and MS/MS ion search.<p> Ribulose bisphosphate carboxylase/oxygenase (Rubisco) was identified as an ABA binding partner, and its interaction with ABA was initially confirmed by its ability to block the photoaffinity labeling reaction with PBI686. In addition, Surface Plasmon Resonance (SPR) experiments with ABA and Rubisco were performed, which provided further evidence for selective interaction between the two binding partners, with a very small preference towards (+)-ABA over (-)-ABA. SPR has also yielded the value of equilibrium dissociation constant (KD) being 5 nM for (+)-ABA and 7 nM for (-)-ABA. This was further confirmed by [3H] (±)-ABA binding assays, which have also shown that non-radiolabeled (+)-ABA and (-)-ABA (at concentration 1000 fold higher) were able to displace [3H] (±)-ABA from binding to Rubisco. Compounds other than ABA such as PA (phaseic acid) or trans-(+)-ABA were not able to displace [3H] (±)-ABA, which has suggested the selectivity of binding. Further, Rubisco enzymatic activity in the absence of ABA was compared to that in the presence of ABA at various concentrations. The results have clearly indicated the effect of ABA on Rubiscos enzymatic activity. This was reflected on the enzymes Km values being increased by seven fold in the presence of 10 mM ABA and 1 mM substrate (RuBP). The interpretation of changes in enzyme kinetics upon inhibition by ABA most resembles allosteric inhibition. The biological function of this newly discovered interaction is interpreted as ABAs ability to regulate plant growth during abiotic stress by its direct action on the photosynthetic machinery - hypothesis often suggested in the literature.
34

Molecular biology of abscisic acid induced freezing tolerance in bromegrass cell suspension cultures

Lee, Stephen P. (Stephen Peter) 16 April 1992 (has links)
Graduation date: 1992
35

Identification of abscisic acid-binding proteins using a bioactive photoaffinity probe

Galka, Marek Michal 15 September 2009 (has links)
This project was expected to contribute to the understanding of abscisic acid (ABA) perception in plants through identification of new ABA-binding proteins. The novel, biotinylated ABA derivative PBI686 (of biological activity comparable to natural ABA) has served as an affinity probe for isolation of ABA-binding proteins. Photoaffinity labeling in conjunction with affinity chromatography (streptavidin-biotin based) was used for specific identification of target proteins from complex mixtures of cytosolic and membrane-bound proteins. Proteins of interest were identified by Mass Spectrometry through peptide mass fingerprinting and MS/MS ion search.<p> Ribulose bisphosphate carboxylase/oxygenase (Rubisco) was identified as an ABA binding partner, and its interaction with ABA was initially confirmed by its ability to block the photoaffinity labeling reaction with PBI686. In addition, Surface Plasmon Resonance (SPR) experiments with ABA and Rubisco were performed, which provided further evidence for selective interaction between the two binding partners, with a very small preference towards (+)-ABA over (-)-ABA. SPR has also yielded the value of equilibrium dissociation constant (KD) being 5 nM for (+)-ABA and 7 nM for (-)-ABA. This was further confirmed by [3H] (±)-ABA binding assays, which have also shown that non-radiolabeled (+)-ABA and (-)-ABA (at concentration 1000 fold higher) were able to displace [3H] (±)-ABA from binding to Rubisco. Compounds other than ABA such as PA (phaseic acid) or trans-(+)-ABA were not able to displace [3H] (±)-ABA, which has suggested the selectivity of binding. Further, Rubisco enzymatic activity in the absence of ABA was compared to that in the presence of ABA at various concentrations. The results have clearly indicated the effect of ABA on Rubiscos enzymatic activity. This was reflected on the enzymes Km values being increased by seven fold in the presence of 10 mM ABA and 1 mM substrate (RuBP). The interpretation of changes in enzyme kinetics upon inhibition by ABA most resembles allosteric inhibition. The biological function of this newly discovered interaction is interpreted as ABAs ability to regulate plant growth during abiotic stress by its direct action on the photosynthetic machinery - hypothesis often suggested in the literature.
36

An analysis of the environmental and hormonal effects on the growth and development of the moss Ceratodon purpureus /

Knight, Megan. January 2009 (has links)
Thesis (B.S.) Magna Cum Laude--Butler University, 2009. / Includes bibliographical references (leaves 29-30).
37

Isolation and characterization of abscisic acid-responsive, embryo specific genes from Zea mays

Williams, Bruce January 1993 (has links)
Embryogenesis in plants, as in animals, requires the regulated expression of sets of genes involved in developmental processes. To gain insight into the processes regulating gene expression during embryogenesis differential screening was used to identify embryo-specific sequences in a cDNA library constructed from Zea mays embryo RNA. Four embryo-specific sequences and one constitutive sequence were characterized further by RNA blot hybridization and DNA sequence determination. The constitutive sequence and two of the embryo-specific sequences were found to encode parts of the previously-reported chloroplast 23S rRNA, Oleosin KD-18, and RAB-17 genes. Two sequences, named Emb5 and Emb564, were found to encode novel maize homologs of a gene expressed during late embryogenesis in a wide range of seed plants. These 5 genes exhibited differential temporal and spatial accumulation during development. Moreover, analysis of RNA from cultured embryos suggested that 4 of these genes were regulated by abscisic acid. The ABA-responsive genes could be divided into 3 classes, based on their developmental expression, tissue-specificity, and sensitivity to ABA. Antibodies raised against a $ beta$-galactosidase:EMB564 fusion protein were used to analyze the accumulation of the EMB564 and/or EMB5 proteins. These polyclonal antibodies detected one or several polypeptides with a molecular weight less than 14 kD which exhibited patterns of developmental accumulation and regulation similar to Emb5 and Emb564 transcripts.
38

GRAM genes and abscisic acid (ABA) metabolism in the reproductive development of Arabidopsis thaliana

Baron, Kevin 06 1900 (has links)
Abscisic acid (ABA) is a key plant hormone regulating agronomically important processes including seed maturation and dormancy, stomatal opening and closure, along with the transcriptional and physiological response of plants to abiotic and biotic stresses. The current study sought to functionally characterize members of an ABA-responsive gene family encoding GRAM (Glucosyltransferases, Rab-like GTPase activators and Myotubularins) domain proteins in Arabidopsis thaliana. Utilizing reverse genetics loss- and gain-of-function lines associated with GEM-RELATED 5 (GER5) were obtained, which displayed several defects in reproductive development. Gene expression profiling, RNA in situ hybridization and immunohistochemical techniques were utilized to evaluate GER5 and two closely related GRAM genes, GEM-RELATED 1 (GER1) and GLABRA2 EXPRESSION MODULATOR (GEM) in reproductive structures. Microarray profiling of seeds from ger5-2 mutants and wild-type plants revealed transcriptional changes in carbohydrate metabolism, hormone signaling and catabolic processes accompanied seed development defects of ger5-2 mutants. Seed germination assays further revealed ger5-2 mutants exhibited reduced sensitivity to ABA. In assessing GER5, GER1 and GEM as putative ABA-response genes, a second study evaluated the expression of GRAM, AuTophaGy-related (ATG), and ABA-response genes in source and sink organs exposed to abiotic stress or within mutant backgrounds deficient in sugar signaling. Monodansylcadaverine (MDC) staining was also utilized to localize autophagosomes or autophagic bodies within vegetative or reproductive organs during plant development, or in response to carbon starvation or abiotic stress. In a third study transcriptional differences in ABA metabolism, transport and homeostasis were examined within reproductive organs (cauline leaves, inflorescence meristem, developing siliques) exposed to cold and heat stress. This study revealed reproductive organs are characterized by unique patterns of ABA metabolism which differ from tissues typically associated with classical ABA responses. Together, these studies indicate GER5, an uncharacterized ABA-responsive GRAM domain gene, plays a novel role in the reproductive development of plants and that ABA metabolism and signaling are uniquely regulated in reproductive organs.
39

Hormone metabolism and action in developing pea fruit

Nadeau, Courtney Unknown Date
No description available.
40

GRAM genes and abscisic acid (ABA) metabolism in the reproductive development of Arabidopsis thaliana

Baron, Kevin 06 1900 (has links)
Abscisic acid (ABA) is a key plant hormone regulating agronomically important processes including seed maturation and dormancy, stomatal opening and closure, along with the transcriptional and physiological response of plants to abiotic and biotic stresses. The current study sought to functionally characterize members of an ABA-responsive gene family encoding GRAM (Glucosyltransferases, Rab-like GTPase activators and Myotubularins) domain proteins in Arabidopsis thaliana. Utilizing reverse genetics loss- and gain-of-function lines associated with GEM-RELATED 5 (GER5) were obtained, which displayed several defects in reproductive development. Gene expression profiling, RNA in situ hybridization and immunohistochemical techniques were utilized to evaluate GER5 and two closely related GRAM genes, GEM-RELATED 1 (GER1) and GLABRA2 EXPRESSION MODULATOR (GEM) in reproductive structures. Microarray profiling of seeds from ger5-2 mutants and wild-type plants revealed transcriptional changes in carbohydrate metabolism, hormone signaling and catabolic processes accompanied seed development defects of ger5-2 mutants. Seed germination assays further revealed ger5-2 mutants exhibited reduced sensitivity to ABA. In assessing GER5, GER1 and GEM as putative ABA-response genes, a second study evaluated the expression of GRAM, AuTophaGy-related (ATG), and ABA-response genes in source and sink organs exposed to abiotic stress or within mutant backgrounds deficient in sugar signaling. Monodansylcadaverine (MDC) staining was also utilized to localize autophagosomes or autophagic bodies within vegetative or reproductive organs during plant development, or in response to carbon starvation or abiotic stress. In a third study transcriptional differences in ABA metabolism, transport and homeostasis were examined within reproductive organs (cauline leaves, inflorescence meristem, developing siliques) exposed to cold and heat stress. This study revealed reproductive organs are characterized by unique patterns of ABA metabolism which differ from tissues typically associated with classical ABA responses. Together, these studies indicate GER5, an uncharacterized ABA-responsive GRAM domain gene, plays a novel role in the reproductive development of plants and that ABA metabolism and signaling are uniquely regulated in reproductive organs.

Page generated in 0.0602 seconds