• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre as extensões multilineares dos operadores absolutamente somantes

Radrígues, Diana Marcela Serrano 12 March 2014 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-29T12:08:37Z No. of bitstreams: 1 arquivototal.pdf: 967006 bytes, checksum: bd1b76a7b376f5fda6d282d14e851d1a (MD5) / Made available in DSpace on 2016-03-29T12:08:37Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 967006 bytes, checksum: bd1b76a7b376f5fda6d282d14e851d1a (MD5) Previous issue date: 2014-03-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study two generalizations of the well-known concept of absolutely summing operators. The rst one consists of the multiple summing multilinear operators and it is focused on a result of coincidence that is equivalent to the Bohnenblust- Hille inequality. This inequality asserts that, for K = R or C and every positive integer m there exists positive scalars BK;m 1 such that N X i1;:::;im=1 U(ei1 ; : : : ; eim) 2m m+1!m+1 2m BK;m sup z1;:::;zm2DN jU(z1; :::; zm)j for every m-linear mapping U : KN KN ! K and every positive integer N, where (ei)N i=1 denotes the canonical basis of KN: In this line our main goal is the investigation of the best constants BK;m satisfying the above inequality. The second generalization involves the concept of absolutely summing multilinear operators at a given point; we present an abstract version of these operators involving many of their properties. We prove that, considering appropriate sequence spaces, we have other kind of operators as particular cases of our version. / No presente trabalho vamos trabalhar com duas generalizações dos bem conhecidos operadores absolutamente somantes. A primeira envolve os operadores multilineares múltiplo somantes e nos focaremos num resultado de coincidência que é equivalente à desigualdade multilinear de Bohnenblust-Hille. Esta a rma que, para = R ou C, e todo inteiro positivo m 1, existem escalares BK;m 1 tais que N X i1;:::;im=1 U(ei1 ; : : : ; eim) 2m m+1!m+1 2m BK;m sup z1;:::;zm2DN jU(z1; :::; zm)j para toda forma m-linear U : KN KN ! K e todo inteiro positivo N, onde )N i=1 é a base canônica de KN: Nessa linha, nosso objetivo será a investigação das melhores constantes BK;m que satisfazem essa desigualdade. A segunda generalização envolve o estudo dos operadores multilineares absolutamente somantes num ponto; apresentaremos uma versão abstrata destes operadores que engloba várias de suas propriedades. Veremos que, considerando os espaços de sequências adequados, teremos outros tipos de operadores como casos
2

Um índice de somabilidade para pares de espaços de Banach

Nascimento, Lucas de Carvalho 25 July 2017 (has links)
Submitted by Leonardo Cavalcante (leo.ocavalcante@gmail.com) on 2018-04-23T21:42:23Z No. of bitstreams: 1 Arquivototal.pdf: 889863 bytes, checksum: feeec177f9d947c98727574b765d8acb (MD5) / Made available in DSpace on 2018-04-23T21:42:23Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 889863 bytes, checksum: feeec177f9d947c98727574b765d8acb (MD5) Previous issue date: 2017-07-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we study the notion of index of summability for pairs of Banach spaces. This index plays the role of a kind of “measure” of how the space of m-homogeneous polynomials from E to F (or the space of multilinear operators of E1×···×Em to F) are far from being the space of absolutely summing m-homogeneous polynomials (or with the space of multiple summing multilinear operators). In some cases the optimal index of summability is presented. / Neste trabalho, estudamos a noção de índice de somabilidade para pares de espaços de Banach. Esse índice desempenha o papel de um tipo de \medida" de como o espaço dos polinômios m-homogêneos de E em F (ou o espaço dos operadores multilineares de E Em em F) está longe de coincidir com o espaço dos polinômios m- homogêneos absolutamente somantes (ou com o espaço dos operadores multilineares multiplo somantes). Em alguns casos o índice ótimo de somabilidade e apresentado. Palavras-chave: Polinômios absolutamente somantes, operadores multilineares absolutamente somantes, espaços de Banach, índice de somabilidade.

Page generated in 0.0991 seconds