• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O Teorema de Bohnenblust-Hille

Alarcón, Daniel Núñez 15 July 2011 (has links)
Made available in DSpace on 2015-05-15T11:46:01Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1973222 bytes, checksum: 2211069e3e843d6b7636b5e87d4ea973 (MD5) Previous issue date: 2011-07-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The Bohnenblust-Hille Theorem, proved in 1931 in the prestigious journal Annals of Mathematics, asserts that if U : lN 1 ----- lN 1 --! K is an n-linear form and N is a positive integer N, then 0@ N X i1;:::;in=1 jU(ei1 ; :::; ein)j 2n n+11A n+1 2n - Cn kUk , with Cn = n n+1 2n 2 n--1 2 . After a long time overlooked, this result has been explored in the recent years. In this work we detail a beautiful proof of the Bohnenblust-Hille Theorem, due to A. Defant, U. Schwarting and D. Popa. We also investigate the estimates of the constants involved and some asymptotic information, following a recent work of D. Pellegrino and J. Seoane-Sepúlveda. / O Teorema de Bohnenblust-Hille, demonstrado em 1931 no prestigioso jornal Annals of Mathematics, garante que para toda forma n-linear U : lN 1 - - - - lN 1--! K e para qualquer inteiro positivo N, tem-se - - - - - - - - - - - - - - - - 2 . Após um longo tempo esquecido, esse resultado tem sido bastante explorado nos últimos anos. Neste trabalho fazemos, com detalhes, uma bela demonstração do Teorema de Bohnenblust-Hille, devida a A. Defant, U. Schwarting e D. Popa. Também destacamos o cálculo de estimativas das constantes envolvidas e algumas informações assintóticas, de acordo com um recente trabalho de D. Pellegrino e J. Seoane-Sepúlveda.
2

Sobre as extensões multilineares dos operadores absolutamente somantes

Radrígues, Diana Marcela Serrano 12 March 2014 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-29T12:08:37Z No. of bitstreams: 1 arquivototal.pdf: 967006 bytes, checksum: bd1b76a7b376f5fda6d282d14e851d1a (MD5) / Made available in DSpace on 2016-03-29T12:08:37Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 967006 bytes, checksum: bd1b76a7b376f5fda6d282d14e851d1a (MD5) Previous issue date: 2014-03-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study two generalizations of the well-known concept of absolutely summing operators. The rst one consists of the multiple summing multilinear operators and it is focused on a result of coincidence that is equivalent to the Bohnenblust- Hille inequality. This inequality asserts that, for K = R or C and every positive integer m there exists positive scalars BK;m 1 such that N X i1;:::;im=1 U(ei1 ; : : : ; eim) 2m m+1!m+1 2m BK;m sup z1;:::;zm2DN jU(z1; :::; zm)j for every m-linear mapping U : KN KN ! K and every positive integer N, where (ei)N i=1 denotes the canonical basis of KN: In this line our main goal is the investigation of the best constants BK;m satisfying the above inequality. The second generalization involves the concept of absolutely summing multilinear operators at a given point; we present an abstract version of these operators involving many of their properties. We prove that, considering appropriate sequence spaces, we have other kind of operators as particular cases of our version. / No presente trabalho vamos trabalhar com duas generalizações dos bem conhecidos operadores absolutamente somantes. A primeira envolve os operadores multilineares múltiplo somantes e nos focaremos num resultado de coincidência que é equivalente à desigualdade multilinear de Bohnenblust-Hille. Esta a rma que, para = R ou C, e todo inteiro positivo m 1, existem escalares BK;m 1 tais que N X i1;:::;im=1 U(ei1 ; : : : ; eim) 2m m+1!m+1 2m BK;m sup z1;:::;zm2DN jU(z1; :::; zm)j para toda forma m-linear U : KN KN ! K e todo inteiro positivo N, onde )N i=1 é a base canônica de KN: Nessa linha, nosso objetivo será a investigação das melhores constantes BK;m que satisfazem essa desigualdade. A segunda generalização envolve o estudo dos operadores multilineares absolutamente somantes num ponto; apresentaremos uma versão abstrata destes operadores que engloba várias de suas propriedades. Veremos que, considerando os espaços de sequências adequados, teremos outros tipos de operadores como casos

Page generated in 0.0614 seconds