• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 34
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 118
  • 42
  • 39
  • 32
  • 31
  • 29
  • 28
  • 24
  • 22
  • 20
  • 18
  • 18
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Temperature Effects On Integral Abutment Bridges For The Long-Term Bridge Performance Program

Rodriguez, Leo E. 01 May 2012 (has links)
The United States Department of Transportation (US-DOT) Federal Highway Administration (FHWA) initiated in 2009 the Long-Term Bridge Performance (LTBP) program to gather high-quality data on a representative sample of bridges over a twenty-year period of time. The goal of this program is to quantify how bridges behave during their service life while being exposed to different types of loadings and deterioration due to corrosion, fatigue and various climate conditions along with their corresponding maintenances. The data gathered will result in the creation of databases of high quality data, acquired through long-term instrumentation, to be used for improved design practices and effective management of infrastructures by employing best practices for maintenance. As part of the LTBP Program two integral abutment bridges, a California Bridge near Sacramento, CA and a Utah Bridge near Perry, UT, were selected to be monitored for temperature changes as well as to undergo periodic live-load testing. Live-load testing included slowly driving a truck over the bridges. The bridges were instrumented to collect test data and use it to calibrate a finite-element model. This finite-element model was used to determine the actual bridge behavior and compare it with the AASHTO LRFD Specifications. This thesis also examined how different parameters such as thermal gradients, mean temperature, and end-rotation affect these two integral abutment bridges.
62

Fatigue failure load of lithium disilicate restorations cemented on a chairside titanium-base / Effect of restoration design

Kaweewongprasert, Peerapat January 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / PURPOSE: To evaluate the fatigue failure load of distinct lithium disilicate restoration designs cemented on a chairside titanium-base (VariobaseTM for CEREC®, Straumann® LLC, USA) for restoring anterior implant restoration. MATERIALS AND METHODS: Left maxillary incisor restoration was virtually designed in 3 groups (n=10; CTD: lithium disilicate crowns cemented on custom-milled titanium abutments; VMLD: monolithic full-contour lithium disilicate crowns cemented on titanium-base; and VCLD: lithium disilicate crowns cemented on lithium disilicate customized anatomic structures then cemented on titanium-base). The titanium-base was air-abraded with aluminum oxide particles, 50 µm at 2 bars. Subsequently the titanium-base was steamed, air-dried and a thin coat of silane (Monobond Plus, Ivoclar Vivadent®, USA). All ceramic components were surface treated with hydrofluoric acid etching gel, follow by silanized, and bonded with resin cement (Multilink Automix, Ivoclar Vivadent®, USA). Specimens were fatigued at 20 Hz, starting with a load of 100 N (×5000 cycles), followed by stepwise loading up to 1400 N at a maximum of 30,000 cycles each. The failure loads, number of cycles, and fracture analysis were recorded. Data were statistically analyzed using one-way ANOVA followed by pair-wise comparisons (p < 0.05). Kaplan-Meier survival plots and Weibull survival analyses were reported. RESULT: For catastrophic fatigue failure load and total number of cycles for failure, VMLD (1260 N, 175231 cycles) was significantly higher than VCLD (1080 N, 139965 cycles) and CDT (1000 N, 133185 cycles). VMLD had higher Weibull modulus (11.6), demonstrating higher structural reliability. CONCLUSIONS: VMLD performed the best fatigue behavior when compared with the two other groups.
63

Displacement of Screw-Retained Single Crowns into New Generation Narrow Diameter Implants with Conical and Conical/Hex Internal Connections and their Performance when Cyclically Loaded

Jacobs, Nicholas R. January 2019 (has links)
No description available.
64

New Technologies in Short Span Bridges: A Study of Three Innovative Systems

Lahovich, Andrew 01 January 2012 (has links) (PDF)
Short span bridges are commonly used throughout the United States to span small waterways and highway overpasses. New technologies in the civil engineering industry have aided in the creation of many unique designs of these short span highway bridges in efforts to decrease construction cost, decrease maintenance costs, increase efficiency, increase constructability, and increase safety. Three innovative systems, the Integral Abutment Bridge, “Bridge-in-a-Backpack”, and the Folded Plate Girder bridge will be analyzed to study how the bridges behave under various types of loading. Detailed finite element models were created for integral abutment bridges of varying geometry. These models are used to study how the live load distribution transversely across the bridge is effected by varying geometric properties and varying modeling techniques. These models will also be used to determine live load distribution factors for the integral abutment bridges and compare them to current American Association of State Highway and Transportation Officials specifications. The “Bridge-in-a-Backpack” and the Folded Plate Girder bridges were each constructed with a variety of instruments to measure the bridge movements. Readings from these instruments are used to determine the bridge response under various loading conditions. Bridges were analyzed during their construction process, during static live load testing, and during long term seasonal changes. The results from these studies will aid in the refinement of these innovative designs.
65

Numerical Analysis of the Effectiveness of Limited Width Gravel Backfills in Increasing Lateral Passive Resistance

Nasr, Mo'oud 08 June 2010 (has links) (PDF)
Two series of static full-scale lateral pile cap tests were conducted on pile caps with different aspect ratios, with full width (homogeneous) and limited width backfill conditions involving loose sand and dense gravel. The limited width backfills were constructed by placing a relatively narrow zone (3 to 6 ft (0.91 to 1.83 m)) of higher density gravel material adjacent to the cap with loose sand beyond the gravel zone. Test results indicated that large increases in lateral passive resistance could be expected for limited width backfills. The main focus of this study is to assess the contribution of plane strain stress effects and 3D geometric end effects to the total passive resistance mobilized by limited width backfills, using soil and pile cap properties associated with the field tests. For this purpose, the finite element program, PLAXIS 2D was used to investigate the static plane strain passive behavior of the full-scale tests. To validate the procedure, numerical results were calibrated against analytical results obtained from PYCAP and ABUTMENT. The analytical models were additionally validated by comparison with measured ultimate passive resistances. The calibrated model was then used to simulate the passive behavior of limited width gravel backfills. Parametric studies were also executed to evaluate the influence of a range of selected design parameters, related to the pile cap geometry and backfill soil type, on the passive resistance of limited width backfills. Numerical results indicated that significant increases in passive resistance could be expected for long abutment walls where end effects are less pronounced and the geometry is closer to a plane strain condition. Comparisons between measured and numerical results indicated that using the Brinch-Hansen 3D correction factor, R3D, as a multiplier to the plane strain resistances, will provide a conservative estimate of the actual 3D passive response of a pile cap with a limited width backfill. Based on results obtained from the parametric studies, a design method was developed for predicting the ultimate passive resistance of limited width backfills, for both plane strain and 3D geometries.
66

Skew Effects on Passive Earth Pressures Based on Large-Scale Tests

Jessee, Shon Joseph 18 April 2012 (has links) (PDF)
The passive force-deflection relationship for abutment walls is important for bridges subjected to thermal expansion and seismic forces, but no test results have been available for skewed abutments. To determine the influence of skew angle on the development of passive force, lab tests were performed on a wall with skew angles of 0º, 15º, 30º, and 45º. The wall was 1.26 m wide and 0.61 m high and the backfill consisted of dense compacted sand. As the skew angle increased, the passive force decreased substantially with a reduction of 50% at a skew of 30º. An adjustment factor was developed to account for the reduced capacity as a function of skew angle. The shape of the passive force-deflection curve leading to the peak force transitioned from a hyperbolic shape to a more bilinear shape as the skew angle increased. However, the horizontal displacement necessary to develop the peak passive force was typically 2 to 3.5% of the wall height. In all cases, the passive force decreased after the peak value, which would be expected for dense sand; however, at higher skew angles the drop in resistance was more abrupt than at lower skew angles. The residual passive force was typically about 35 to 45% lower relative to the peak force. Lateral movement was minimal due to shear resistance which typically exceeded the applied shear force. Computer models based on the log-spiral method, with apparent cohesion for matric suction, were able to match the measured force for the no skew case as well as the force for skewed cases when the proposed adjustment factor was used.
67

Evaluation of Passive Force on Skewed Bridge Abutments with Large-Scale Tests

Marsh, Aaron Kirt 18 March 2013 (has links) (PDF)
Accounting for seismic forces and thermal expansion in bridge design requires an accurate passive force versus backwall deflection relationship. Current design codes make no allowances for skew effects on the development of the passive force. However, small-scale experimental results and available numerical models indicate that there is a significant reduction in peak passive force as skew angle increases for plane-strain cases. To further explore this issue large-scale field tests were conducted at skew angles of 0°, 15°, and 30° with unconfined backfill geometry. The abutment backwall was 11 feet (3.35-m) wide by 5.5 feet (1.68-m) high, and backfill material consisted of dense compacted sand. The peak passive force for the 15° and 30° tests was found to be 73% and 58%, respectively, of the peak passive force for the 0° test which is in good agreement with the small-scale laboratory tests and numerical model results. However, the small differences may suggest that backfill properties (e.g. geometry and density) may have some slight effect on the reduction in peak passive force with respect to skew angle. Longitudinal displacement of the backfill at the peak passive force was found to be approximately 3% of the backfill height for all field tests and is consistent with previously reported values for large-scale passive force-deflection tests, though skew angle may slightly reduce the deflection necessary to reach backfill failure. The backfill failure mechanism appears to transition from a log spiral type failure mechanism where Prandtl and Rankine failure zones develop at low skew angles, to a failure mechanism where a Prandtl failure zone does not develop as skew angle increases.
68

Lateral Resistance of Piles Near Vertical MSE Abutment Walls at Provo Center Street

Nelson, Kent R. 18 March 2013 (has links) (PDF)
Full scale lateral load tests were performed on four piles located at various distances behind MSE walls. Three of the four test piles were production piles used to support bridges, and the other pile a production pile used as part of the bridge abutment. The objective of the testing was to determine the effect of spacing from the wall on the lateral resistance of the piles and on the force resisted by the MSE reinforcement. Lateral load-displacement curves were developed for pile at various spacing and with various reinforcement ratio (reinforcement length, L divided by wall height, H). The force in the reinforcement was measured using strain gauges. Lateral load analyses were performed to determine the minimum spacing required to eliminate any effect of the wall on the pile resistance (p-multiplier of 1) and the reduction in soil resistance at closer spacings (p-multiplier less than 1). With the addition of the data fro Price (2012) tentative curves have been developed showing p-multiplier vs. normalized spacing behind wall for a length to height ratio of 1.6, 1.2, and 1.1. The data suggest that with a L/H ratio of 1.6, a p-multiplier of 1 can be used when the normalized distance from the back face of the MSE wall to the center of the pile is at least 3.8 pile diameters. When the L/H ratio decreases to 1.2 and 1.1 a p-multiplier of 1 can be used when the pile is at least 4.5 and 5.2 pile diameters behind the wall respectively. For smaller spacings, the p-multipliers decreased essentially linearly with normalized distance from the wall. A plot showing the increased load in the reinforcement as a function of distance from the pile has been developed. The data in the plot is normalized to the maximum lateral load and to the spacing from the wall to the pile. The best fit curve is capped at a normalized tensile force of approximately 0.12. The data show that the increase in tensile force on the reinforcement when a lateral load is applied to the piles decreases exponentially as the normalized distance from the pile increases. The plot is limited to the conditions tested, i.e. for the reinforcement in the upper 3 ft. of the wall with L/H values at 1.2.
69

Experimental and Analytical Investigations of Piles and Abutments of Integral Bridges

Arsoy, Sami 05 January 2001 (has links)
Bridges without expansion joints are called "integral bridges." Eliminating joints from bridges crates concerns for the piles and the abutments of integral bridges because the abutments and the piles are subjected to temperature-induced cyclic lateral loads. As temperatures change daily and seasonally, the lengths of integral bridges increase and decrease, pushing the abutment against the approach fill and pulling it away. As a result the bridge superstructure, the abutment, the approach fill, the foundation piles and the foundation soil are all subjected to cyclic loading, and understanding their interactions is important for effective design and satisfactory performance of integral bridges. The ability of piles to accommodate lateral displacements is a significant factor in determining the maximum possible length of integral bridges. In order to build longer integral bridges, pile stresses should be kept low. This research project investigated the complex interactions that take place between the structural components of the integral bridge and the soil through experimental and analytical studies. A literature review was conducted to gain insight into the integral bridge/soil interactions, and to synthesize the information available about the cyclic loading damage to piles of integral bridges. The ability of the piles and the abutments to withstand cyclic loads was investigated by conducting large-scale cyclic load tests. Three pile types and three semi-integral abutments were tested in the laboratory. Experiments simulated 75 years of bridge life for each specimen by applying over 27,000 displacement cycles. Numerical analyses were conducted to investigate the interactions among the abutment, the approach fill, the foundation soil, and the piles. The original VDOT semi-integral abutment hinge experienced shear key failure as observed in two large-scale laboratory tests. The revised hinge detail did not exhibit any sign of damage. Both abutments tolerated 75-year worth of displacement cycles without any appreciable change in their behavior. Semi-integral abutments are recommended for longer integral bridges because they can reduce pile stresses. As the need to build longer integral bridges grows, the role of the semi-integral abutments is expected to become more important. The data from the experimental program indicates that steel H-piles are the best pile type for support of integral abutment bridges. Concrete piles are not recommended because under repeated lateral loads, tension cracks progressively worsen and significantly reduce vertical load carrying capacity of these piles. Pipe piles have high flexural stiffness, which results in an undesired condition for the shear stresses in the abutment. For this reason, stiff pipe piles are not recommended for support of integral bridges. Numerical analyses indicate that the interactions between the approach fill and the foundation soils create favorable conditions for stresses in piles supporting integral bridges. Because of these interactions, the foundation soil acts as if it were softer, resulting in reduction in pile stresses compared to a single pile in the same soil without the approach fill above it. / Ph. D.
70

Efficient numerical computation and experimental study of temporally long equilibrium scour development around abutment

Pu, Jaan H., Lim, S.Y. 01 May 2013 (has links)
Yes / For the abutment bed scour to reach its equilibrium state, a long flow time is needed. Hence, the employment of usual strategy of simulating such scouring event using the 3D numerical model is very time consuming and less practical. In order to develop an applicable model to consider temporally long abutment scouring process, this study modifies the common approach of 2D shallow water equations (SWEs) model to account for the sediment transport and turbulence, and provides a realistic approach to simulate the long scouring process to reach the full scour equilibrium. Due to the high demand of the 2D SWEs numerical scheme performance to simulate the abutment bed scouring, a recently proposed surface gradient upwind method (SGUM) was also used to improve the simulation of the numerical source terms. The abutment scour experiments of this study were conducted using the facility of Hydraulics Laboratory at Nanyang Technological University, Singapore to compare with the presented 2D SGUM-SWEs model. Fifteen experiments were conducted over a total period of 3059.7 hours experimental time (over 4.2 months). The comparison shows that the 2D SGUM-SWEs model gives good representation to the experimental results with the practical advantage.

Page generated in 0.0557 seconds