• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèse de polymères vinyliques pégylés dégradables par polymérisation radicalaire contrôlée par les nitroxydes / Synthesis of degradable pegylated vinyl polymers by nitroxide-mediated radical polymerization

Delplace, Vianney 31 October 2014 (has links)
La nanomédecine, appliquée en particulier au traitement du cancer, suscite depuis une quinzaine d’années un intérêt grandissant, développant des stratégies innovantes pour le ciblage spécifique de tissues malades. De nouveaux progrès en la matière sont encore à venir, mais nécessitent de nouveaux matériaux offrant une grande flexibilité en termes de synthèse, ainsi que la possibilité de fonctionnalités et de propriétés physicochimiques variées ; avantages tous présentés par l’utilisation des techniques de polymérisation radicalaire contrôlée (CRP). Ces techniques de polymérisation ont déjà démontré leur fort potentiel à travers différents systèmes nanoparticulaires à base de prodrogues de polymère, mais aucun d’entre eux ne s’avère dégradable ce qui pourrait empêcher à l’avenir leur utilisation et leur développement.Anticipant les besoins, ce projet a eu pour but la synthèse de polymères PEGylés dégradables par la technique de polymérisation contrôlée par les nitroxydes (NMP), travail très en amont de l’habituel procédé d’élaboration d’un nouveau nanomédicament. Pour ce faire, la NMP du méthacrylate de méthyl éther oligo(éthylène glycol) (MeOEGMA) a été combinée à la polymérisation radicalaire par ouverte de cycle (rROP) des acétals de cétène cyclique (CKAs), connus comme précurseurs de fonctions esters.Parmi trois CKAs étudiés, le 2-méthylène-4-phényl-1,3-dioxolane (MPDL) a montré une capacité unique à copolymériser avec les dérivés de méthacrylates, grâce à sa structure ouverte de type « styrènique » permettant son utilisation en NMP. A travers une étude approfondie des propriétés de contrôle et de caractère vivant de ces copolymères, le MPDL s’est également révélé être le premier comonomère de contrôle des méthacrylates à être dégradable. Un lien direct entre dégradabilité et quantité de MPDL insérée a été démontré, permettant jusqu’à l’hydrolyse complète des matériaux. Ces copolymères n’ont montré aucune cytotoxicité, et ce sur trois types de cellules différents (fibroblastes, cellules endothéliales et macrophages), et une étude similaire sur la toxicité de leurs produits de dégradation a permis d’aboutir à la même conclusion, soulignant la possible biocompatibilité de ces nouveaux matériaux qui, si confirmée, permettrait leur utilisation pour des applications biomédicales.Parallèlement, un second projet portant sur la mise au point d’une nouvelle alcoxyamine à base du nitroxide SG1 et présentant une fonction azlactone, baptisée AzSG1, a été développé pour la synthèse de polymères fonctionnalisables par NMP. Utilisant l’alcoxyamine AzSG1 comme amorceur, les NMPs du styrène, de l’acrylate de n-butyle et du méthacrylate de méthyle ont été réalisées avec succès, ainsi que le couplage quantitatif de la benzylamine comme preuve de concept de la possible fonctionnalisation. Dans un avenir proche, utiliser cet amorceur fonctionnalisable pour la synthèse de copolymères à base de MeOEGMA et de MPDL pourrait ainsi permettre l’élaboration de copolymères PEGylés, dégradables et fonctionnalisables par NMP, pour des applications dans le domaine de la bioconjugaison et du drug delivery. / Nanomedicine, especially for cancer treatment, has attracted much interest over the last fifteen years, developing innovative strategies for targeting diseased tissues. Further improvements of these approaches will require advanced new materials affording versatility, functionalities and specific physico-chemical properties, all advantages offered by the controlled radical polymerization (CRP) techniques. These radical polymerizations already showed their great potential through various efficient anticancer polymer nanocarriers but all lacking of degradability, which may hinder any actual developments.Anticipating the needs, this project focused on the synthesis of degradable PEG-based polymers by nitroxide-mediated polymerization (NMP), as an early stage in the usual process of nanocarrier design. To do so, NMP of oligo(ethylene glycol) methyl ether methacrylate (MeOEGMA) has been for the first time combined to the radical ring-opening polymerization (rROP) of various cyclic ketene acetals (CKAs), known as ester precursors.Among three CKAs tested, 2-methylene-4-phenyl-1,3-dioxolane (MPDL) has shown a unique ability to copolymerize with methacrylate derivatives, likely due to a styrene-like open structure allowing for its use in NMP. Through a careful study of the control and livingness properties of these copolymers, MPDL was also demonstrated to be the first degradable controlling comonomer for polymethacrylate synthesis. The degradability of the resulting PEG-based copolymers was proven to be proportional to the adjustable amount of MPDL inserted, up to complete degradation. These copolymers showed no cytotoxic effect on various cell types (fibroblasts, endothelial cells and macrophages), and an additional study of the innocuousness of their degradation products led to similar results, underlining their potential biocompatibility which, if confirmed, would allow these materials to be used for biomedical applications.A second project about a new azlactone-functionalized SG1-based alkoxyamine (AzSG1) was also set up, as initiator for the synthesis of functionalizable polymers by NMP. Using the AzSG1 alkoxyamine, the NMP of styrene, n-butyl acrylate and methyl methacrylate were successfully performed, as well as a quantitative coupling of benzylamine as proof of concept. In the near future, making use of this functionalizable initiator for copolymerizing MeOEGMA with MPDL may allow the easy synthesis of functionalized degradable copolymers by NMP, for bioconjugation and drug delivery applications.
2

Polyesters Fonctionnels par Polymérisation Radicalaire par Ouverture de Cycle, une Plateforme Nanoparticulaire pour la Délivrance de Principe Actif pour les Maladies Cardiovasculaires / Functionalized Polyesters by Radical Ring-Opening Polymerization as a Nanoparticle-based Platform for Drug Delivery in Cardiovascular Diseases

Tran, Johanna 17 December 2018 (has links)
D’après l’Organisation Mondiale de la Santé (OMS), les maladies cardiovasculaires (CVDs) sont la cause majeure de morbidité et de mortalité dans le monde. Dans un contexte où les thérapies non chirurgicales impliquent une administration de molécules actives à hautes doses, limiter les effets secondaires et augmenter l’efficacité thérapeutique est un enjeu majeur. Une possible réponse à cette problématique est l’utilisation de nanoparticules polymères encapsulant des molécules actives. Pour des applications de délivrance de principe actif et/ou de génie tissulaire, les polymères utilisés doivent suivre certains critères : (i) la biodégradabilité ; (ii) la biocompatibilité ; (iii) l’uniformité des chaînes polymères et (iv) une fonctionnalisation aisée par les molécules d’intérêt. Dans ce contexte, des copolymères dégradables obtenus par polymérisation radicalaire par ouverture de cycle (rROP) entre les acétals de cétène cyclique (CKAs) et des monomères vinyliques semblent satisfaire à ces critères. En effet, les CKAs sont des monomères cycliques qui s’ouvrent par voie radicalaire et permettent la formation de fonctions esters dans le squelette polymère au cours de la polymérisation. Hormis les CKAs bien connus (e.g., 2-methylene-1,3-dioxepane (MDO), et 2-methylene-4-phenyl-1,3-dioxolane (MPDL)), un besoin de nouveaux CKAs plus hydrophiles et/ou avec de nouvelles fonctionnalités est récemment apparu. Par conséquent la synthèse de nouveaux CKAs a été étudiée.Par ailleurs, les calculs par la théorie de la fonctionnelle de la densité (DFT) ont démontré que la copolymérisation radicalaire du MDO avec des dérivés d’éther de vinyle (VE) était quasi idéale, ce qui fut par la suite confirmé expérimentalement. Ainsi, ce système a permis l’obtention via un mécanisme radicalaire de copolymères similaires à des polyesters, en particulier à la polycaprolactone (PCL), hautement fonctionnels via l’utilisation de divers VE. La dégradation hydrolytique des P(MDO-co-VE) ainsi obtenus a été étudiée en conditions accélérées et physiologiques. Les copolymères ont montré une vitesse de dégradation dépendant du taux de MDO et de la nature du VE. L’hydrolyse en conditions physiologiques des P(MDO-co-VE) a donné des taux de dégradation comparables à ceux obtenus pour l’acide polylactique (PLA) et la PCL, tous deux approuvés par l’agence américaine des produits alimentaires et médicamenteux (FDA). La dégradation enzymatique assistée par les lipases Candida antartica a également été étudiée, donnant une dégradation quasi complète des copolymères en 48 h. En plus d’être biodégradables, l’avantage des P(MDO-co-VE) est que les fonctions portées par les VE ont permis une fonctionnalisation aisée des copolymères via le greffage de petites molécules ou des macromolécules telles que des chaînes de poly(éthylène glycol) (PEG) ; soit après polymérisation (approche “grafting to”) soit avant polymérisation (approche “grafting through”). Les propriétés physico-chimiques ont pu être finement ajustées, permettant ainsi la formulation de nanoparticules stables convenant à des applications de délivrance de principes actifs. / According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the major cause of morbidity and mortality in the world. In a context where non-surgical therapy involves active molecules administration at high doses, circumventing possible toxic side effects and increasing the therapeutic effect is a major challenge. Thus, the use of drug-loaded polymeric nanoparticles may represent a potential solution to this problem. For drug delivery and/or tissue engineering applications, polymers should follow some criteria: (i) biodegradability; (ii) biocompatibility; (iii) uniformity of the polymer chain and (iv) possibility of functionalization with molecules of interest. As such, degradable copolymers were obtained by radical ring-opening copolymerization (rROP) between cyclic ketene acetals (CKAs) and vinylic monomers and fulfilled all those criteria. Indeed, CKAs are cyclic monomers which open through a radical mechanism and give degradable ester functions in the polymer backbone upon polymerization. Besides well-known CKAs (e.g., 2-methylene-1,3-dioxepane (MDO), and 2-methylene-4-phenyl-1,3-dioxolane (MPDL)), a crucial need for new CKAs that would be more hydrophilic and/or with new functionalities has recently emerged. Therefore, synthesis of new CKAs was investigated.In addition, the rROP of MDO and vinyl ether (VE) derivatives was predicted to be quasi-ideal by Density Functional Theory (DFT) calculations and subsequently confirmed experimentally. Thus, this system gave the opportunity to obtain polyester-like copolymers, especially polycaprolactone-like polymers, highly functional from the use of functional VE derivatives. Hydrolytic degradation of the resulting P(MDO-co-VE) was investigated under accelerated and physiological conditions. Copolymers showed tunable degradation rate as a function of the MDO content and of the nature of the VE. Hydrolysis in physiological conditions of P(MDO-co-VE) copolymers led to a degradation rate comprised between those obtained for polylactide (PLA) and PCL, both approved by the Food and Drug Administration (FDA). Enzymatic degradation by lipases Candida antartica was also studied, leading to nearly complete degradation in 48 h. In addition to be hydrolytically and enzymatically degradable, a strong advantage of P(MDO-co-VE) copolymers rely in their easiness of functionalization via the use of various VE moieties, leading to efficient grafting by small molecules or macromolecules such as poly(ethylene glycol) (PEG) chains; either after polymerization (“grafting to” approach) or before polymerization (“grafting through” approach). Physicochemical properties were finely tuned enabling the formulation of stable nanoparticles suitable for drug delivery purpose.
3

Prodrogues Polymères Dégradables par Polymérisation Radicalaire par Ouverture de Cycle Contrôlée par les Nitroxydes / Degradable Polymer Prodrugs by Nitroxide-Mediated Radical Ring-Opening Polymerization

Guegain, Elise 28 November 2017 (has links)
La copolymérisation radicalaire par ouverture de cycle contrôlée par les nitroxydes entre les esters méthacryliques et les acétals de cétène cycliques a permis de synthétiser des copolymères vinyliques bien contrôlés et dégradables contenant des fonctions esters le long de la chaine polymère. Plus précisément, des copolymérisations entre le 2-méthylène-4-phenyl-1,3-dioxolane (MPDL) et l’oligo(éthylène glycol) méthyl éther méthacrylate (OEGMA) ou le méthacrylate de méthyle (MMA) ont été amorcées par une alkoxyamine basée sur le nitroxyde SG1. Des copolymères de type P(OEGMA-co-MPDL) et P(MMA-co-MPDL) ont été obtenus et dégradés hydrolytiquement en conditions accélérées ou physiologiques. Leurs cinétiques de dégradation furent également comparées à celles de polyesters traditionnels (e.g., PLGA, PLA and PCL) où il a été montré que la dégradation des copolymères de P(OEGMA-co-MPDL) pouvait être ajustée par la stœchiométrie initiale en monomères et qu’elle se situait entre celles du PLA et du PCL. En revanche, les copolymères de P(MMA-co-MPDL), plus hydrophobes, ont présenté une hydrolyse très lente, bien inférieure à celle du PCL. Dans un deuxième temps, une nouvelle famille de prodrogues polymères dégradable a été synthétisé par copolymérisation radicalaire par ouverture de cycle contrôlée par les nitroxydes entre le MPDL et l’OEGMA ou le MMA, à partir d’un amorceur couplé à un principe actif (méthode du principe actif amorceur). Pour ce faire, la Gemcitabine, un principe actif anticancéreux, a été couplé à une alcoxyamine à base SG1 qui fut ensuite utilisée pour amorcer la réaction de copolymérisation. Les copolymères ainsi obtenus ont montré des propriétés de libération de la Gem et des activités cytotoxiques sur différentes lignées cellulaires en relation avec la nature de l’ester méthacrylique utilisé, la nature de la liaison entre la Gem et le copolymère ainsi que le taux de MPDL dans le copolymère. Cette étude nous a permis d’extraire des relations de type structure-activité importantes pour des développements futurs. / Nitroxide-mediated radical ring-opening copolymerization of methacrylic esters and cyclic ketene acetals was investigated and enabled the synthesis of well-defined degradable vinyl copolymers containing ester groups along the main chain, whose amount was readily adjusted by changing the initial comonomer feed. More specifically, the copolymerizations of 2-methylene-4-phenyl-1,3-dioxolane (MPDL) and either oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or methyl methacrylate (MMA) were initiated by an alkoxyamine initiator based on the SG1 nitroxide. It led to a library of P(OEGMA-co-MPDL) and P(MMA-co-MPDL) materials that were hydrolytically degraded under both accelerated and physiological conditions. Their hydrolytic degradation kinetics were also benchmarked against traditional polyesters (e.g., PLGA, PLA and PCL) where P(OEGMA-co-MPDL) copolymers showed tunable degradation rates as function of the MPDL content, being in between those of PLA and PCL. Conversely, the more hydrophobic P(MMA-co-MPDL) copolymers exhibited much slower hydrolysis than that of PCL. In a second step, a new class of degradable polymer prodrugs was developed by nitroxide-mediated radical ring-opening copolymerization of MPDL with OEGMA or MMA, from a drug-bearing initiator (‘drug-initiated’ method). To do so, Gemcitabine, an anticancer drug, was derivatized with a SG1-based alkoxyamine to initiate the copolymerization reaction. The resulting degradable polymer prodrugs exhibited interesting characteristics in terms of drug release and in vitro cytotoxicity, depending on the nature of the methacrylic ester used, the nature of the linker between the drug and the polymer and the MPDL content. This study enabled us to extract important structure-activity relationships of great importance for further development.

Page generated in 0.0438 seconds