Spelling suggestions: "subject:"aceleração doo universo"" "subject:"aceleração ddo universo""
1 |
Energia escura e aceleração do Universo: Aspectos conceituais e testes observacionais / Dark Energy and The Accelerating Universe: Conceptual Aspects and Observational TestsJesus, José Fernando de 23 June 2010 (has links)
Na última década, o extraordinário progresso nas observações astronômicas (distâncias com supernovas (SNe Ia), espectros de potência da matéria e da radiação cósmica de fundo (RCF), determinação do brilho de aglomerados de galáxias, etc.) aliado com importantes desenvolvimentos teóricos, transformaram a Cosmologia numa das fronteiras mais excitantes da ciência contemporânea. Nesta tese, diferentes testes observacionais são utilizados para vincular alguns cenários cosmológicos acelerados (com e sem energia escura), todos eles definidos no contexto teórico da Relatividade Geral. Inicialmente, para uma grande classe de modelos com decaimento do vácuo, investigamos os vínculos provenientes da existência de objetos velhos em altos redshifts. No modelo de Chen e Wu generalizado, encontramos que o limite para o parâmetro livre descrevendo a taxa do decaimento do vácuo é 0,21 < n < 0,81. Este resultado descarta o modelo de Chen e Wu original (n=2) e também o modelo de concordância cósmica, LCDM (n=0). Além disso, quando incluímos o fluido bariônico em nossa análise do modelo de Wang e Meng, obtemos para seu parâmetro livre um limite inferior, epsilon > 0,231, um valor em desacordo com estimativas independentes baseadas em SNe Ia, RCF e o brilho de Raios-X de aglomerados. Propusemos também um teste estatístico com base nas idades estimadas para uma amostra de 13 galáxias velhas em altos redshifts. Através de uma análise conjunta envolvendo as idades das galáxias e as oscilações acústicas dos bárions (BAO), vinculamos o valor da constante de Hubble no contexto do modelo LCDM plano. Considerando um tempo de incubação adotado por diferentes autores, obtemos h=0,71±0,04 (1 sigma), um resultado de acordo com observações independentes baseadas em Cefeidas (obtidas com o Hubble Space Telescope) e outras estimativas mais recentes. Outro resultado interessante foi obtido através de uma análise termodinâmica para uma classe de modelos com interação no setor escuro (matéria escura-energia escura). Contrariamente ao que se pensava até então, encontramos que a termodinâmica permite que a matéria escura decaia em energia escura, contanto que ao menos uma das componentes possua um potencial químico não-nulo. Como complemento, mostramos que, para um termo de interação específico, dados de SNe Ia, BAO e RCF favorecem o decaimento da matéria escura com ~ 93% de confiança estatística. Investigamos também o comportamento do redshift de transição em diferentes cosmologias, com e sem energia escura, e mostramos que essa quantidade pode ter uma variação extrema dependendo do modelo cosmológico subjacente. Finalmente, discutimos também um novo modelo cosmológico cuja aceleração em baixos redshifts é determinada pela criação de partículas da matéria escura fria. O modelo representa uma redução do setor escuro, isto é, não tem energia escura, contém apenas um parâmetro livre e satisfaz os vínculos de Supernovas do tipo Ia tão bem quanto o modelo LCDM padrão. / In the last decade, the extraordinary progress of the astronomical observations (distances with supernovas, matter and cosmic background radiation (CBR) power spectrum, X-ray surface brightness of galaxy clusters, etc) associated with important theoretical developments turned Cosmology one of the most exciting frontiers of contemporary science. In this thesis, different observational tests are used to constrain several cosmological accelerating scenarios (with and without dark energy), all of them defined in the theoretical framework of General Relativity. Initially, for a large class of decaying vacuum models, we investigate the constraints provided by the existence of old high redshift objects. In the model proposed by Chen and Wu, we find that the limit for the free parameter describing the decay rate of the vacuum fluid is 0.21 < n < 0.81. This result ruled out the original Chen and Wu model (n = 2) and also the cosmic concordance model, LCDM (n = 0). Further, when we include the baryonic fluid in our analysis of the Wang and Meng model, we find for its free parameter a lower bound, epsilon > 0.231, a value in disagreement with independent estimates based on SNe Ia, CMB (shift parameter) and the X-ray surface brightness of galaxy clusters. We also propose a new cosmological statistical test based on the estimated ages of 13 old high redshift galaxies. By performing a joint analysis involving the ages of the galaxies and the baryon acoustic oscillations (BAO) probe, we constrain the value of the Hubble parameter in the context of the flat LCDM model. For an incubation time adopted by different authors, we find h = 0.71 ± 0.04 (1 sigma), a result in agreement with independent observations based on Cepheids (obtained with the Hubble Space Telescope) and other recent estimations. Another interesting result has been derived from a thermodynamic analysis for a class of models endowed with interaction in the dark sector (dark matter and dark energy). In contrast with some results appearing in the literature, we show that the decaying of cold dark matter into dark energy is not forbidden by thermodynamics, provided that the chemical potential of one component is different from zero. As a complement, we also show (for a specific term describing the interaction) that this kind of decaying is favored by SNe Ia, BAO and CMB data with ~ 93% of statistical confidence. We also investigate in detail the behavior of the transition redshift for different cosmologies (with and without dark energy). It is found that such a quantity may have an extreme variation that depends on the underlying cosmological model. Finally, we also discuss a new cosmological model whose acceleration at low redshifts is determined by the creation of cold dark matter particles. The model represents a reduction of the dark sector, that is, it has no dark energy, contains only one free parameter and satisfies the Supernovae type Ia constraints with the same precision of the standard LCDM model.
|
2 |
Energia escura e aceleração do Universo: Aspectos conceituais e testes observacionais / Dark Energy and The Accelerating Universe: Conceptual Aspects and Observational TestsJosé Fernando de Jesus 23 June 2010 (has links)
Na última década, o extraordinário progresso nas observações astronômicas (distâncias com supernovas (SNe Ia), espectros de potência da matéria e da radiação cósmica de fundo (RCF), determinação do brilho de aglomerados de galáxias, etc.) aliado com importantes desenvolvimentos teóricos, transformaram a Cosmologia numa das fronteiras mais excitantes da ciência contemporânea. Nesta tese, diferentes testes observacionais são utilizados para vincular alguns cenários cosmológicos acelerados (com e sem energia escura), todos eles definidos no contexto teórico da Relatividade Geral. Inicialmente, para uma grande classe de modelos com decaimento do vácuo, investigamos os vínculos provenientes da existência de objetos velhos em altos redshifts. No modelo de Chen e Wu generalizado, encontramos que o limite para o parâmetro livre descrevendo a taxa do decaimento do vácuo é 0,21 < n < 0,81. Este resultado descarta o modelo de Chen e Wu original (n=2) e também o modelo de concordância cósmica, LCDM (n=0). Além disso, quando incluímos o fluido bariônico em nossa análise do modelo de Wang e Meng, obtemos para seu parâmetro livre um limite inferior, epsilon > 0,231, um valor em desacordo com estimativas independentes baseadas em SNe Ia, RCF e o brilho de Raios-X de aglomerados. Propusemos também um teste estatístico com base nas idades estimadas para uma amostra de 13 galáxias velhas em altos redshifts. Através de uma análise conjunta envolvendo as idades das galáxias e as oscilações acústicas dos bárions (BAO), vinculamos o valor da constante de Hubble no contexto do modelo LCDM plano. Considerando um tempo de incubação adotado por diferentes autores, obtemos h=0,71±0,04 (1 sigma), um resultado de acordo com observações independentes baseadas em Cefeidas (obtidas com o Hubble Space Telescope) e outras estimativas mais recentes. Outro resultado interessante foi obtido através de uma análise termodinâmica para uma classe de modelos com interação no setor escuro (matéria escura-energia escura). Contrariamente ao que se pensava até então, encontramos que a termodinâmica permite que a matéria escura decaia em energia escura, contanto que ao menos uma das componentes possua um potencial químico não-nulo. Como complemento, mostramos que, para um termo de interação específico, dados de SNe Ia, BAO e RCF favorecem o decaimento da matéria escura com ~ 93% de confiança estatística. Investigamos também o comportamento do redshift de transição em diferentes cosmologias, com e sem energia escura, e mostramos que essa quantidade pode ter uma variação extrema dependendo do modelo cosmológico subjacente. Finalmente, discutimos também um novo modelo cosmológico cuja aceleração em baixos redshifts é determinada pela criação de partículas da matéria escura fria. O modelo representa uma redução do setor escuro, isto é, não tem energia escura, contém apenas um parâmetro livre e satisfaz os vínculos de Supernovas do tipo Ia tão bem quanto o modelo LCDM padrão. / In the last decade, the extraordinary progress of the astronomical observations (distances with supernovas, matter and cosmic background radiation (CBR) power spectrum, X-ray surface brightness of galaxy clusters, etc) associated with important theoretical developments turned Cosmology one of the most exciting frontiers of contemporary science. In this thesis, different observational tests are used to constrain several cosmological accelerating scenarios (with and without dark energy), all of them defined in the theoretical framework of General Relativity. Initially, for a large class of decaying vacuum models, we investigate the constraints provided by the existence of old high redshift objects. In the model proposed by Chen and Wu, we find that the limit for the free parameter describing the decay rate of the vacuum fluid is 0.21 < n < 0.81. This result ruled out the original Chen and Wu model (n = 2) and also the cosmic concordance model, LCDM (n = 0). Further, when we include the baryonic fluid in our analysis of the Wang and Meng model, we find for its free parameter a lower bound, epsilon > 0.231, a value in disagreement with independent estimates based on SNe Ia, CMB (shift parameter) and the X-ray surface brightness of galaxy clusters. We also propose a new cosmological statistical test based on the estimated ages of 13 old high redshift galaxies. By performing a joint analysis involving the ages of the galaxies and the baryon acoustic oscillations (BAO) probe, we constrain the value of the Hubble parameter in the context of the flat LCDM model. For an incubation time adopted by different authors, we find h = 0.71 ± 0.04 (1 sigma), a result in agreement with independent observations based on Cepheids (obtained with the Hubble Space Telescope) and other recent estimations. Another interesting result has been derived from a thermodynamic analysis for a class of models endowed with interaction in the dark sector (dark matter and dark energy). In contrast with some results appearing in the literature, we show that the decaying of cold dark matter into dark energy is not forbidden by thermodynamics, provided that the chemical potential of one component is different from zero. As a complement, we also show (for a specific term describing the interaction) that this kind of decaying is favored by SNe Ia, BAO and CMB data with ~ 93% of statistical confidence. We also investigate in detail the behavior of the transition redshift for different cosmologies (with and without dark energy). It is found that such a quantity may have an extreme variation that depends on the underlying cosmological model. Finally, we also discuss a new cosmological model whose acceleration at low redshifts is determined by the creation of cold dark matter particles. The model represents a reduction of the dark sector, that is, it has no dark energy, contains only one free parameter and satisfies the Supernovae type Ia constraints with the same precision of the standard LCDM model.
|
3 |
Cosmologias aceleradas com criação de matéria: teoria e testes observacionais / Accelerating Cosmologies with Matter Creation: Theory and Observational TestsOliveira, Felipe Andrade 13 March 2015 (has links)
Os recentes avanços em cosmologia observacional indicam que o universo esteja passando por uma fase de expansão acelerada. A determinação do mecanismo responsável pela aceleração cósmica constitui um dos problemas mais intrigantes na ciência hoje. Entre os diversos candidatos a mecanismo de aceleração, a explicação mais simples e econômica é assumir a existência de uma constante cosmológica associada à energia do vácuo. Contudo, essa interpretação leva a importantes problemas conceituais associados à natureza dessa componente. Nesta tese, investigamos a dinâmica de diferentes mecanismos de aceleração cósmica, comparando suas previsões com diversos testes observacionais. Em particular, demos ênfase aos cenários baseados na criação de matéria escura fria (CCDM), nos quais a presente aceleração do universo é produzida sem a presença de um fluido exótico, como consequência do processo de produção de partículas de matéria escura gravitacionalmente induzido. Inicialmente, propusemos um modelo no qual o mecanismo de criação de partículas é capaz de gerar uma cosmologia dinamicamente degenerada com o modelo padrão, CDM. Discutimos no chamado modelo de Lima, Jesus & Oliveira (LJO) a dinâmica cosmológica com criação de matéria escura fria e com pressão. Através de um teste estatístico de $\\chi^2$, mostramos que o modelo fornece ótimo ajuste aos dados de supernovas tipo Ia (SNe Ia). Posteriormente, estudamos a evolução de pequenas perturbações de densidade em um fundo homogêneo para modelos tipo CCDM, através do formalismo Neo-Newtoniano. Restringindo-nos ao modelo LJO, comparamos as previsões obtidas nesse contexto com as proveniente do modelo CDM. Mostramos que o modelo é capaz de fornecer excelente ajuste aos dados observacionais de medidas da taxa de crescimento linear, para o caso plano e com velocidade efetiva do som $c^2_=-1$. Ainda dentro do cenário CCDM, investigamos uma segunda proposta original, com capacidade de ajuste às observações similar aos modelos CDM e LJO com mesmo número de parâmetros livres, porém com dinâmica não degenerada com estes. Derivamos a dinâmica cosmológica do modelo e discutimos a sua viabilidade através da análise estatística de medidas de SNe Ia e do parâmetro de Hubble em diferentes redshifts $H(z)$. Finalmente, discutimos a dinâmica de um modelo com decaimento do vácuo ((t)CDM) e sua descrição em campos escalares. Assumindo como forma d o termo de vácuo uma série de potências truncada do parâmetro de Hubble, derivamos as equações dinâmicas básicas e as previsões cosmológicas do modelo. Mostramos que, quando a transferência de energia entre as componentes dos setor escuro se dá através da criação de partículas, modelos CCDM e (t)CDM podem compartilhar a mesma dinâmica e termodinâmica, dentro de certas condições. Adicionalmente, mostramos que o modelo é capaz de prover um bom ajuste às medidas de SNe Ia e da chamada razão CMB/BAO. Obtivemos ainda uma descrição do modelo (t)CDM por um campo escalar, estendendo a validade do modelo para outros espaços-tempos e outras teorias gravitacionais. Nossos resultados mostram que existem diversas alternativas viáveis ao atual modelo padrão em cosmologia, capazes de contornar os problemas as sociados à constante cosmológica. A discussão dessas alternativas é essencial para uma compreensão mais profunda acerca da dinâmica, da composição e do destino do universo. / Recent advances in observational cosmology indicate that the universe is undergoing an accelerating stage of expansion. The determination of the mechanism responsible for the cosmic acceleration is one of the most intriguing problems in science today. Among many candidates for the acceleration mechanism, the simplest and most economical explanation is to assume the existence of a cosmological constant associated with the vacuum energy. However, this interpretation leads to important conceptual problems associated with the nature of this component. In this thesis, we investigate the dynamics of different mechanisms of cosmic acceleration, comparing their predictions through several observational tests. In particular, we emphasize the scenarios based on creation of cold dark matter (CCDM), in which the present acceleration of the universe is produced without the presence of an exotic fluid as a result of the gravitationally induced dark matter production process. Initially, we have proposed a model in which the particle creation mechanism is able to produce a cosmology dynamically degenerated with respect to the standard model, CDM. We discussed the cosmological dynamics for the creation of cold dark matter and dark matter with pressure within the so-called model of Lima, Jesus & Oliveira (LJO). Through a statistical $\\chi^2$ test, we showed that the model provides a good fit to the type Ia supernovae (SNe Ia) data. Subsequently, we studied the evolution of small density perturbations in a homogeneous background for CCDM type models through the Neo-Newtonian formalism. Restricting ourselves to the LJO model, the predictions obtained in this context were compared with those from the CDM model. We showed that the model is able to provide a very good fit to the linear growth rate observational data, for a flat universe and effective speed of sound $c^2_=-1$. Also within the CCDM scenario, we discussed a second original proposal with similar goodnes-of-fit and same degree of freedom to the models CDM and LJO, but with a non-degenerated dynamics. We derived the dynamics of the model and discussed its viability through the statistical analysis of measurements of SNe Ia and Hubble parameter in different redshifts $H(z)$, obtaining results in complete agreement. Finally, we discussed the dynamics of a model with vacuum decay ((t)CDM) and its description by scalar fields. Assuming the form of the vacuum term as a power series in the Hubble parameter, we derived the basic dynamic equations and the cosmological predictions of the model. We showed that when the energy exchange between the components of the dark sector is through the creation of particles, CCDM models and (t)CDM can share the same dynamics and thermodynamics under certain conditions. Additionally, we showed that the model is able to provide a good fit to the SNe Ia data and measurements of the CMB/BAO ratio. We also derived a description of CDM model by a scalar field, extending the validity of the model for other space-times and other gravitational theories. Our results show that there are several viable alternatives to the current standard model of cosmology, able to overcome the problems associated with the cosmological constant. The discussion of these alternatives is essential to a deeper understanding of the dynamics,composition and fate of the universe.
|
4 |
Reduzindo o setor escuro do Universo: uma nova cosmologia acelerada com criação de matéria escura fria / Reducing the Dark Sector of the Universe: A New Accelerating Cosmology with Cold Dark Matter CreationOliveira, Felipe Andrade 03 May 2010 (has links)
Nesta dissertação nós propomos uma nova cosmologia relativística acelerada cujo conteúdo material é composto apenas por bárions e matéria escura fria. A não existência de uma componente de energia escura implica que nosso cenário é baseado numa redução do chamado setor escuro do universo. Neste modelo, o presente estágio acelerado é determinado pela pressão negativa descrevendo a produção de partículas de matéria escura fria induzida pelo campo gravitacional variável do universo. Para um universo espacialmente plano ($\\Omega _ + \\Omega _b = 1$), como previsto pela inflação, este tipo de cenário possui somente um parâmetro livre e a equação diferencial governando a evolução do fator de escala é exatamente a mesma do modelo $\\Lambda$CDM. Neste caso, encontramos que o parâmetro efetivo de densidade de matéria é $\\Omega_= 1 - \\alpha$, onde $\\alpha$ é um par\\^metro constante ligado à taxa de criação de matéria escura fria. Aplicando um teste estatístico $\\chi^2$ para os dados de Supernovas do tipo Ia (Union Sample 2008), limitamos os par\\^metros livres do modelo nos casos espacialmente plano e com curvatura. Em particular, encontramos que para o caso plano $\\alpha \\sim 0.71$, de forma que $\\Omega_ \\sim 0.29$, como tem sido inferido independentemente por lentes gravitacionais fracas, estrutura de grande escala, radiação cósmica de fundo e outras observações complementares. / In this dissertation we propose a new accelerating relativistic cosmology whose matter content is composed only by baryons and cold dark matter. The nonexistence of a dark energy component implies that our scenario is based on a reduction of the so-called dark sector of the Universe. The present accelerating stage in this model is powered by the negative pressure des\\-cribing the cold dark matter particle production induced by the variable gravitational field of the Universe. For a spatially flat universe ($\\Omega _ + \\Omega _b = 1$), as predicted by inflation, this kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the $\\Lambda$CDM model. In this case, we find that the effectively observed matter density parameter is $\\Omega_ = 1 - \\alpha$, where $\\alpha$ is a constant parameter related to the cold dark matter creation rate. By applying a $\\chi^2$ statistical test for Supernovae type Ia data (Union Sample 2008), we constrain the free parameters of the model for spatially flat and curved cases. In particular, to the flat case we find $\\alpha \\sim 0.71$, so that $\\Omega_ \\sim 0.29$, as independently inferred from weak gravitational lensing, large scale structure, cosmic background radiation, and other complementary observations.
|
5 |
Cosmologias aceleradas com criação de matéria: teoria e testes observacionais / Accelerating Cosmologies with Matter Creation: Theory and Observational TestsFelipe Andrade Oliveira 13 March 2015 (has links)
Os recentes avanços em cosmologia observacional indicam que o universo esteja passando por uma fase de expansão acelerada. A determinação do mecanismo responsável pela aceleração cósmica constitui um dos problemas mais intrigantes na ciência hoje. Entre os diversos candidatos a mecanismo de aceleração, a explicação mais simples e econômica é assumir a existência de uma constante cosmológica associada à energia do vácuo. Contudo, essa interpretação leva a importantes problemas conceituais associados à natureza dessa componente. Nesta tese, investigamos a dinâmica de diferentes mecanismos de aceleração cósmica, comparando suas previsões com diversos testes observacionais. Em particular, demos ênfase aos cenários baseados na criação de matéria escura fria (CCDM), nos quais a presente aceleração do universo é produzida sem a presença de um fluido exótico, como consequência do processo de produção de partículas de matéria escura gravitacionalmente induzido. Inicialmente, propusemos um modelo no qual o mecanismo de criação de partículas é capaz de gerar uma cosmologia dinamicamente degenerada com o modelo padrão, CDM. Discutimos no chamado modelo de Lima, Jesus & Oliveira (LJO) a dinâmica cosmológica com criação de matéria escura fria e com pressão. Através de um teste estatístico de $\\chi^2$, mostramos que o modelo fornece ótimo ajuste aos dados de supernovas tipo Ia (SNe Ia). Posteriormente, estudamos a evolução de pequenas perturbações de densidade em um fundo homogêneo para modelos tipo CCDM, através do formalismo Neo-Newtoniano. Restringindo-nos ao modelo LJO, comparamos as previsões obtidas nesse contexto com as proveniente do modelo CDM. Mostramos que o modelo é capaz de fornecer excelente ajuste aos dados observacionais de medidas da taxa de crescimento linear, para o caso plano e com velocidade efetiva do som $c^2_=-1$. Ainda dentro do cenário CCDM, investigamos uma segunda proposta original, com capacidade de ajuste às observações similar aos modelos CDM e LJO com mesmo número de parâmetros livres, porém com dinâmica não degenerada com estes. Derivamos a dinâmica cosmológica do modelo e discutimos a sua viabilidade através da análise estatística de medidas de SNe Ia e do parâmetro de Hubble em diferentes redshifts $H(z)$. Finalmente, discutimos a dinâmica de um modelo com decaimento do vácuo ((t)CDM) e sua descrição em campos escalares. Assumindo como forma d o termo de vácuo uma série de potências truncada do parâmetro de Hubble, derivamos as equações dinâmicas básicas e as previsões cosmológicas do modelo. Mostramos que, quando a transferência de energia entre as componentes dos setor escuro se dá através da criação de partículas, modelos CCDM e (t)CDM podem compartilhar a mesma dinâmica e termodinâmica, dentro de certas condições. Adicionalmente, mostramos que o modelo é capaz de prover um bom ajuste às medidas de SNe Ia e da chamada razão CMB/BAO. Obtivemos ainda uma descrição do modelo (t)CDM por um campo escalar, estendendo a validade do modelo para outros espaços-tempos e outras teorias gravitacionais. Nossos resultados mostram que existem diversas alternativas viáveis ao atual modelo padrão em cosmologia, capazes de contornar os problemas as sociados à constante cosmológica. A discussão dessas alternativas é essencial para uma compreensão mais profunda acerca da dinâmica, da composição e do destino do universo. / Recent advances in observational cosmology indicate that the universe is undergoing an accelerating stage of expansion. The determination of the mechanism responsible for the cosmic acceleration is one of the most intriguing problems in science today. Among many candidates for the acceleration mechanism, the simplest and most economical explanation is to assume the existence of a cosmological constant associated with the vacuum energy. However, this interpretation leads to important conceptual problems associated with the nature of this component. In this thesis, we investigate the dynamics of different mechanisms of cosmic acceleration, comparing their predictions through several observational tests. In particular, we emphasize the scenarios based on creation of cold dark matter (CCDM), in which the present acceleration of the universe is produced without the presence of an exotic fluid as a result of the gravitationally induced dark matter production process. Initially, we have proposed a model in which the particle creation mechanism is able to produce a cosmology dynamically degenerated with respect to the standard model, CDM. We discussed the cosmological dynamics for the creation of cold dark matter and dark matter with pressure within the so-called model of Lima, Jesus & Oliveira (LJO). Through a statistical $\\chi^2$ test, we showed that the model provides a good fit to the type Ia supernovae (SNe Ia) data. Subsequently, we studied the evolution of small density perturbations in a homogeneous background for CCDM type models through the Neo-Newtonian formalism. Restricting ourselves to the LJO model, the predictions obtained in this context were compared with those from the CDM model. We showed that the model is able to provide a very good fit to the linear growth rate observational data, for a flat universe and effective speed of sound $c^2_=-1$. Also within the CCDM scenario, we discussed a second original proposal with similar goodnes-of-fit and same degree of freedom to the models CDM and LJO, but with a non-degenerated dynamics. We derived the dynamics of the model and discussed its viability through the statistical analysis of measurements of SNe Ia and Hubble parameter in different redshifts $H(z)$, obtaining results in complete agreement. Finally, we discussed the dynamics of a model with vacuum decay ((t)CDM) and its description by scalar fields. Assuming the form of the vacuum term as a power series in the Hubble parameter, we derived the basic dynamic equations and the cosmological predictions of the model. We showed that when the energy exchange between the components of the dark sector is through the creation of particles, CCDM models and (t)CDM can share the same dynamics and thermodynamics under certain conditions. Additionally, we showed that the model is able to provide a good fit to the SNe Ia data and measurements of the CMB/BAO ratio. We also derived a description of CDM model by a scalar field, extending the validity of the model for other space-times and other gravitational theories. Our results show that there are several viable alternatives to the current standard model of cosmology, able to overcome the problems associated with the cosmological constant. The discussion of these alternatives is essential to a deeper understanding of the dynamics,composition and fate of the universe.
|
6 |
Não-comutatividade em um modelo cosmológico com fluido de poeiraRodrigues, Luíz Guilherme Rezende 31 July 2015 (has links)
Submitted by isabela.moljf@hotmail.com (isabela.moljf@hotmail.com) on 2017-07-05T12:28:39Z
No. of bitstreams: 1
luizguilhermerezenderodrigues.pdf: 1205869 bytes, checksum: c4e47a354a29b83e71eb5ce1b0aa7636 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-08T15:32:06Z (GMT) No. of bitstreams: 1
luizguilhermerezenderodrigues.pdf: 1205869 bytes, checksum: c4e47a354a29b83e71eb5ce1b0aa7636 (MD5) / Made available in DSpace on 2017-08-08T15:32:06Z (GMT). No. of bitstreams: 1
luizguilhermerezenderodrigues.pdf: 1205869 bytes, checksum: c4e47a354a29b83e71eb5ce1b0aa7636 (MD5)
Previous issue date: 2015-07-31 / Na presente dissertação estudamos um modelo cosmológico clássico não-comutativo com a métrica Friedmann-Robertson-Walker, cujas seções espaciais podem ter curvatura constante positiva (k = 1), negativa (k = —1) ou zero (k = O). O conteúdo material é descrito por um fluido perfeito de poeira. A dinâmica do modelo não-comutativo é descrita no formalismo Hamiltoniano, com o auxílio da formulação ADM e do formalismo variacional de Schutz. O espaço de fase do modelo é dado pelas variáveis a(t) , T (t), Pa(t) e PT(t), em que a(t) é o fator de escala do Universo, T (t) é a coordenada associada ao fluido e Pa(t), PT(t) seus respectivos momentos canonicamente conjugados. Introduzimos a não-comutatividade via parênteses de Poisson. Para estudarmos o modelo, introduzimos transformações de coordenadas que nos levaram a variáveis comutativas, mais um parâmetro não-comutativo ,y. Combinando as equações de Hamilton, obtidas a partir da Hamiltoniana escrita em termos das variáveis comutativas, mais o parâmetro 7, chegamos a uma equação diferencial, de segunda ordem, para o fator de escala a (t) . Tal equação descreve a dinâmica do modelo não-comutativo e depende de vários parâmetros, tais como: 7, k, C e B. Obtivemos soluções analíticas para essa equação. Com as soluções encontradas, estudamos as novas propriedades introduzidas pela não-comutatividade, com o objetivo de obter resultados que auxiliem na explicação da expansão acelerada do Universo. As soluções não-comutativas apresentaram dois parâmetros adicionais -y e B, em comparação com as soluções comutativas correspondentes, além dos parâmetros comuns k e C, este último associado à energia do fluido. Tais parâmetros influenciam de maneira significativa o tipo de comportamento de cada solução. Para determinados valores dos parâmetros algumas soluções podem ser consideradas como possíveis candidatas à explicação da expansão atual do Universo. Dentre esses casos, para k = O, as soluções não-comutativas apresentaram um crescimento exponencial para o infinito, enquanto as soluções comutativas correspondentes apresentaram crescimento polinomial. Para k = —1 ambas as soluções apresentaram o mesmo comportamento qualitativo de expansão para o infinito descrito por funções hiperbólicas. Para k = 1, foram obtidas soluções expansivas que apesar de não descreverem a expansão atual do Universo são importantes, pois, não estão presentes no modelo comutativo correspondente. Tais expansões ocorrem de maneira linear no tempo, mas, de maneira a oscilar entre máximos e mínimos. Buscamos na literatura outro modelo não-comutativo com a finalidade de verificar se maneiras diferentes de introduzir a não-comutatividade levam aos mesmos resultados. Tais comparações resultaram em comportamentos qualitativos bastante diferentes entre tais soluções não-comutativas, uma vez que as equações diferenciais para o fator de escala obtidas, para cada modelo, são diferentes. / In this dissertation we study a classical noncommutative cosmological model with a Friedmann-Robertson-Walker metric. The spatial sections may have positive (k = 1), negative (k = —1) or zero (k = 0) constant curvature. The matter content is described by a dust perfect fluid. The dynamics of the noncommutative model is described using the Hamilton's formalism, with the aid of the ADM and Schutz's formalisms. The phase space of the model is given by the variables a(t), T (t) , Pa(t) and PT(t), where a(t) is the scale factor of the Universe, T(t) is the coordinate associated to the fluid and Pa(t), PT(t) are their canonically conjugated momenta. We introduce the noncommutativity through Poisson brackets. In order to study the model, we introduce coordinate transformations from the noncommutative coordinates to the commutative ones plus a noncommutative parameter 'y. Combining the Hamilton's equations, obtained from the Hamiltonian written in terms of the commutative variables plus the 7 parameter, we arrive at a second order differential equation for the scale factor a(t). This equation describes the dynamics of the non-commutative model and depends on several parameters, such as: 7, k, C and B. We obtained analytical solutions for this equation. With the obtained solutions, we study the new properties introduced by noncommutativity, in order to get results that help explaining the accelerated expansion of the Universe. The noncommutative solutions have two additional parameters -y and B, compared to the corresponding commutative solutions, beyond the common parameters k and C, the last one associated to the fluid energy. These parameters significantly influence the behavior of each solution. For certain parameters values some solutions are considered as possible candidates to explain the current expansion of the Universe. Among these cases, for k = 0, the non-commutative solutions showed an exponential increase to infinity, while the corresponding commutative ones showed polynomial growth. For k = —1 both solutions had the same qualitative behavior of expansion to infinity described by hyperbolic functions. For k = 1, expansive solutions, which do not describe the current expansion of the universe, were found. They are important because they are not present in the corresponding commutative model. Such solutions expands linearly in time oscillating between maximum and minimum values. We seek in the literature another non-commutative model in order to verify if different ways of introducing the noncommutativity lead to the same results. Such comparisons result in quite different qualitative behavior of such noncommutative solutions, since the differential equations for the scale factor obtained for each model are different.
|
7 |
Reduzindo o setor escuro do Universo: uma nova cosmologia acelerada com criação de matéria escura fria / Reducing the Dark Sector of the Universe: A New Accelerating Cosmology with Cold Dark Matter CreationFelipe Andrade Oliveira 03 May 2010 (has links)
Nesta dissertação nós propomos uma nova cosmologia relativística acelerada cujo conteúdo material é composto apenas por bárions e matéria escura fria. A não existência de uma componente de energia escura implica que nosso cenário é baseado numa redução do chamado setor escuro do universo. Neste modelo, o presente estágio acelerado é determinado pela pressão negativa descrevendo a produção de partículas de matéria escura fria induzida pelo campo gravitacional variável do universo. Para um universo espacialmente plano ($\\Omega _ + \\Omega _b = 1$), como previsto pela inflação, este tipo de cenário possui somente um parâmetro livre e a equação diferencial governando a evolução do fator de escala é exatamente a mesma do modelo $\\Lambda$CDM. Neste caso, encontramos que o parâmetro efetivo de densidade de matéria é $\\Omega_= 1 - \\alpha$, onde $\\alpha$ é um par\\^metro constante ligado à taxa de criação de matéria escura fria. Aplicando um teste estatístico $\\chi^2$ para os dados de Supernovas do tipo Ia (Union Sample 2008), limitamos os par\\^metros livres do modelo nos casos espacialmente plano e com curvatura. Em particular, encontramos que para o caso plano $\\alpha \\sim 0.71$, de forma que $\\Omega_ \\sim 0.29$, como tem sido inferido independentemente por lentes gravitacionais fracas, estrutura de grande escala, radiação cósmica de fundo e outras observações complementares. / In this dissertation we propose a new accelerating relativistic cosmology whose matter content is composed only by baryons and cold dark matter. The nonexistence of a dark energy component implies that our scenario is based on a reduction of the so-called dark sector of the Universe. The present accelerating stage in this model is powered by the negative pressure des\\-cribing the cold dark matter particle production induced by the variable gravitational field of the Universe. For a spatially flat universe ($\\Omega _ + \\Omega _b = 1$), as predicted by inflation, this kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the $\\Lambda$CDM model. In this case, we find that the effectively observed matter density parameter is $\\Omega_ = 1 - \\alpha$, where $\\alpha$ is a constant parameter related to the cold dark matter creation rate. By applying a $\\chi^2$ statistical test for Supernovae type Ia data (Union Sample 2008), we constrain the free parameters of the model for spatially flat and curved cases. In particular, to the flat case we find $\\alpha \\sim 0.71$, so that $\\Omega_ \\sim 0.29$, as independently inferred from weak gravitational lensing, large scale structure, cosmic background radiation, and other complementary observations.
|
8 |
Uma descrição da expansão e aceleração do universo no contexto das teorias f(R) / A description of expansion and acceleration of the universe in the context of f(R) theoriesSilva, Paulo Michel Longo Tavares da 29 February 2012 (has links)
Made available in DSpace on 2016-12-12T20:15:48Z (GMT). No. of bitstreams: 1
INTRODUCAO.pdf: 361900 bytes, checksum: 61c5aed4cf4bc2e7a2cd004f090f00ab (MD5)
Previous issue date: 2012-02-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work reviews concisely some of the theoretical attempts to explain the recently observed acceleration of the universe. Emphasis is put on the so-called theories f(R) which involve invariant modi.cations of the Einstein-Hilbert Lagrangian density. The pertinent .eld equations are derived from three distinct formalisms which are known in the literature as the metric formalism, the Palatini formalism and the a¢ ne formalism. For the case of the metric and Palatini formalisms, we carry out some interesting calculations and show the corresponding versions of the Friedmann equations. In addition, we present a minimally coupled Friedmann-Maxwell-f(R) model which may give a cosmological equation of state for w that agrees with available measurements of the red-shift of Ia supernovae. / Diante das observações experimentais da expansão cósmica acelerada, diversos - modelos teóricos surgiram para explicar a aceleração do Universo. Neste trabalho revisamos modelos tais como a constante cosmológica e quintessência, a qual é modelada por um campo escalar. O contexto aqui apresentado foi elaborado a partir das teorias modificadas da gravitação, também conhecidas como teorias f(R). Tal modelo é considerado uma generalização da ação de Einstein-Hilbert onde termos invariantes de curvatura podem descrever um regime acelerado para o universo. As equações de campo podem ser obtidas a partir de três formalismos distintos, a saber, formalismo métrico, Palatini e métrico-afim. Realizamos algumas manipulações algébricas para esses formalismos, bem como a apresentação das equações de Friedmann generalizadas para o formalismo métrico e Palatini. Também apresentamos um modelo no formalismo métrico com um campo de Maxwell acoplado minimamente. As equações de Friedmann-Maxwell-f(R), as quais dependem da forma funcional de f(R) como também do campo Fµv, permitem que uma equação de estado para w pode ser ajustada em concordância com as medidas do red-shift de supernovas IA.
|
Page generated in 0.0671 seconds