• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise Termodinâmica de um Buraco Negro com Monopolo Global em Teorias f(R)

Pereira, Francisco Bento Lustosa da Costa Duarte 26 May 2017 (has links)
Submitted by Biblioteca do Instituto de Física (bif@ndc.uff.br) on 2017-05-26T20:14:25Z No. of bitstreams: 1 TeseFranciscoLustosa.pdf: 726667 bytes, checksum: b1704d3cae6ec9a91da3b57f936bc53b (MD5) / Made available in DSpace on 2017-05-26T20:14:25Z (GMT). No. of bitstreams: 1 TeseFranciscoLustosa.pdf: 726667 bytes, checksum: b1704d3cae6ec9a91da3b57f936bc53b (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho estudamos o problema do Buraco Negro (BN) em um região contendo um Monopolo Global em uma teoria de gravidade f(R). Utilizando o formalismo da métrica, obtemos as equações de campo em termos de [Fórmula] e assumimos que F(R) seja uma fun c~ao de grau n da coordenada radial. Adotando uma aproximação, conseguimos obter soluções do tipo BN e analisamos suas quantidades termodinâmicas, como temperatura local, energia e capacidade térmica para qualquer n. Comparamos os resultados obtidos com o caso do BN de Scharzschild com um Monopo Global e também observamos se há influência do grau n nos efeitos termodinâmicos. / In this work we study the problem of a Black Hole (BH) in a region containing a Global Monopole in a f(R) gravity. We use the metric formalism to obtain the eld equations in terms of [Formula] and assume that F(R) is a n-degree function of the radial coordinate. Adopting an aproximation, we obtain BH solutions and analise the resulting thermodynamical quantities, such as local temperature, energy and heat capacity for all n's. We compare the results with the ones obtaines in the case of the Scharzschild BH with a Global Monopole and observe if there is an in uence of the degree n in the thermodynamical e ects.
2

Um estudo sobre a viola??o de causalidade em teorias f (R) de gravidade

Oliveira, Thiago Bruno Rafael de Freitas 20 February 2015 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-05-03T23:21:33Z No. of bitstreams: 1 ThiagoBrunoRafaelDeFreitasOliveira_TESE.pdf: 526254 bytes, checksum: 61d5ee01018fba7dbf62069cd51b8f62 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-05-05T22:15:10Z (GMT) No. of bitstreams: 1 ThiagoBrunoRafaelDeFreitasOliveira_TESE.pdf: 526254 bytes, checksum: 61d5ee01018fba7dbf62069cd51b8f62 (MD5) / Made available in DSpace on 2016-05-05T22:15:10Z (GMT). No. of bitstreams: 1 ThiagoBrunoRafaelDeFreitasOliveira_TESE.pdf: 526254 bytes, checksum: 61d5ee01018fba7dbf62069cd51b8f62 (MD5) Previous issue date: 2015-02-20 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / A observa??o atual da expans?o acelerada do universo, bem como o t?o conhecido problema da mat?ria escura em astrof?sica, tem fornecido muitas discuss?es e algumas d?vidas sobre a bem testada teoria de gravita??o de Einstein, conhecida como relatividade geral. V?rias modifica??es, assim como teorias extendidas de gravidade, tem sido formuladas nos ?ltimos 15 anos, e alguns autores tem feito surgir uma nova roupagem. Nesta tese, apresentamos e discutimos, em uma classe de gravidade extendida, a teoria alternativa conhecida como gravidade f(R). Essas teorias surgem quando substitu?mos na a??o de Einstein-Hilbert o escalar de curvatura R por alguma bem comportada fun??o n?o linear f(R). Elas fornecem uma maneira alternativa para explicar a acelera??o c?smica atual sem necessitar invocar qualquer componente de energia escura ou a exist?ncia de dimens?es espaciais extras. Ao lidar com gravidade f(R), duas diferentes abordagens variacionais podem ser seguidas, a saber, o formalismo m?trico e o de Palatini. Na abordagem m?trica, as conex?es s?o assumidas, desde o princ?pio, como sendo as conex?es de Levi-Civita e varia??o da a??o ? feita com respeito ? m?trica apenas, enquanto que na abordagem de Palatini a m?trica e as conex?es s?o tratadas como campos independentes e a varia??o da a??o ? feita com respeito a ambos. Apesar de fornecer as mesmas equa??es para a a??o de Einstein-Hilbert, para um termo geral n?o-linear f(R) na a??o, d?o origem a equa??es de movimento muito diferentes. Para os dois formalismos, fizemos uma sistem?tica e detalhada deriva??o das equa??es de campo, com generaliza??o das equa??es de Einstein da relatividade geral e examinamos a conserva??o covariante destas equa??es. Nessa considera??o, detectamos e chamamos aten??o para a conserva??o covariante das equa??es de Palatini para a gravidade f(R), que, em nosso ponto de vista, merece um pouco mais de debate sobre a relev?ncia f?sica dos aspectos conformes da abordagem de Palatini. Afim de lan?ar algum luz sobre o debate do papel da gravidade f(R), examinamos tamb?m a quest?o de como essas teorias permitem espa?os-tempos na qual a causalidade, um resultado fundamental em qualquer teoria f?sica, ? violada. No ?mbito da gravidade f(R), a estrutura causal do espa?o-tempo quadridimensional tem, localmente, a mesma natureza qualitativa como o espa?o-tempo plano da relatividade especial: a causalidade ? permitida localmente. A quest?o n?o-local, entretanto, e deixada em aberto, e a viola??o de causalidade pode ocorrer. Como bem se sabe, na relatividade geral existem solu??es para as equa??es de campo que tem anomalias causais na forma de curvas de tipo-tempo fechadas, o renomado modelo de G?del sendo o exemplo mais conhecido de uma solu??o deste tipo. Aqui mostramos que para a gravidade f(R) satisfazendo a condi??o df/dR>0, independentemente de ser formulada no formalismo m?trico ou de Palatini, cada solu??o do tipo-G?del para um fluido perfeito com densidade ? e press?o p que satisfaz a condi??o de energia forte (? + p 0) ? necessariamente isom?trica ? geometria de G?del. Isso demonstra que essas teorias apresentam anomalias causais na forma de curvas tipo-tempo fechadas. N?s tamb?m derivamos uma express?o para o raio cr?tico rc, al?m do qual a causalidade ? violada, para uma teoria f(R) de gravidade arbitr?ria de Palatini assim como m?trica. As express?es tornam evidente que a viola??o da causalidade depende da forma de f(R) e dos componentes de mat?ria. Como um exemplo, examinamos a solu??o tipo-G?del de fluido perfeito na classe f(R) = R - ?/Rn de teorias de gravidade de Palatini, e mostramos que para a densidade de mat?ria positiva e para ? e n no intervalo permitido pelas observa??es, essas teorias n?o admitem a geometria de G?del como solu??o para um fluido perfeito de suas equa??es. N?s tamb?m examinamos a viola??o de causalidade do tipo-G?del considerando um campo escalar como conte?do material. Para essa fonte, mostramos que a gravidade f(R) de Palatini d? surgimento a uma ?nica solu??o do tipo-G?del sem nenhuma viola??o de causalidade. Finalmente mostramos pela combina??o de um fluido perfeito com um campo escalar como fontes da geometria do tipo-G?del, obtemos tanto solu??es na forma de curvas do tipo-tempo fechadas como solu??es sem nenhuma viola??o de causalidade. No formalismo m?trico, pegamos outro exemplo, a gravidade f(R) = R - ? R*ln(1+R/R*), que ? livre de singularidades do escalar de Ricci e ? cosmologicamente vi?vel. Aqui tamb?m mostramos que combinando fluido perfeito com campo escalar como fontes da geometria de G?del, essa classe de teorias acomoda tanto solu??es causais e n?o-causais para a faixa de par?metros permitidos cosmologicamente. Nossas conclus?es ? que a gravidade f(R) pode remediar a patologia causal na forma de curvas do tipo-tempo fechadas que s?o permitidas na relatividade geral. / The currently observed accelerated expansion of the Universe, as well as the so called dark mater problem in astrophysics, has raised many discussions and some doubts about the very well tested Einstein?s theory of gravitation, known as General Relativity. Several modified, as well as extended gravity theories, have been formulated in the last 15 years, and some others been resuscitated in new aspect. In this thesis, we present and discuss, in the class of extended gravity, the alternative theories known as f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci scalar curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking either a dark energy component or the existence of an extra spatial dimension. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms. In the metric approach the connections are assumed, ab initio, to be the Levi-Civita connections and variation of the action is taken with respect to the metric only, whereas in the Palatini approach the metric and the connections are treated as independent fields and the variation of the action is taken with respect to both. Although they give the same equations for the Einstein-Hilbert action, for a general f(R) nonlinear term in the action they give rise to very different equations of motion. For both formalisms, we make a systematic and detailed derivation of the field equations, which generalize the Einstein?s equations of General Relativity and examine the covariant conservation of this equations. In this regard, we detect and call attention for the covariant conservation of the equations in Palatini f(R) gravity, which, in our view, deserves some more debate on the physical relevance of conformal aspects of the Palatini approach. In order to shed some light on the debate about the role of f(R) gravity, we also examine the question as to whether this theories permit space-times in which the causality, a fundamental issue in any physical theory, is violated. In the framework of f(R) gravity, the causal structure of four-dimensional space-time has locally the same qualitative nature as the flat space-time of special relativity: causality holds locally. The nonlocal question, however, is left open, and violation of causality can occur. As is well known, in General Relativity there are solutions to the field equations that have causal anomalies in the form of closed time-like curves, the renowned G?del model being the best known example of such a solution. Here we show that for f(R) gravity satisfying the condition df/dR > 0, independently of being formulated in metric or Palatini formalism, every perfect type-fluid G?del-type solution with density ? and pressure p that satisfy the weak energy condition (? + p ? 0) is necessarily isometric to the G?del geometry. This demonstrate that these theories present causal anomalies in the form of closed time-like curves. We also derive expressions for critical radius rc , beyond which the causality is violated, for an arbitrary Palatini, as well as metric f(R) theory of gravity. The expressions make apparent that the violation of causality depends on the form of f(R) and on the matter content components. As an example, we examine the G?del-type perfect type-fluid solutions in the f(R) = R ? ?/Rn class of Palatini gravity theories, and show that for positive matter density and for ? and n in the range permitted by the observations, these theories does not admit the G?del geometry as a perfect type-fluid solution of its field equations. We also examine the violation of causality of G?del-type by considering a single scalar field as the matter content. For this source we show that Palatini f(R) gravity gives rise to a unique G?del-type solution with no violation of causality. Finally we show that by combining a perfect type-fluid plus a scalar field as source of G?del-type geometries, we obtain either solutions in the form of closed time-like curves as well as solutions with no violation of causality. In the metric formalism we take another example, the f(R) = R ? ?R? ln(1 + R/R?) gravity, which is free from singularities of the Ricci scalar and is cosmologically viable. Here we also show that combining perfect type-fluid with a scalar field as source of the G?del geometry, this class of theories accommodate both causal and noncausal solutions for the range of cosmologically allowed parameters. Our conclusion is that f(R) gravity theory may remedies the causal pathology in the form of closed time-like curves which is allowed in General Relativity.
3

Uma descrição da expansão e aceleração do universo no contexto das teorias f(R) / A description of expansion and acceleration of the universe in the context of f(R) theories

Silva, Paulo Michel Longo Tavares da 29 February 2012 (has links)
Made available in DSpace on 2016-12-12T20:15:48Z (GMT). No. of bitstreams: 1 INTRODUCAO.pdf: 361900 bytes, checksum: 61c5aed4cf4bc2e7a2cd004f090f00ab (MD5) Previous issue date: 2012-02-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work reviews concisely some of the theoretical attempts to explain the recently observed acceleration of the universe. Emphasis is put on the so-called theories f(R) which involve invariant modi.cations of the Einstein-Hilbert Lagrangian density. The pertinent .eld equations are derived from three distinct formalisms which are known in the literature as the metric formalism, the Palatini formalism and the a¢ ne formalism. For the case of the metric and Palatini formalisms, we carry out some interesting calculations and show the corresponding versions of the Friedmann equations. In addition, we present a minimally coupled Friedmann-Maxwell-f(R) model which may give a cosmological equation of state for w that agrees with available measurements of the red-shift of Ia supernovae. / Diante das observações experimentais da expansão cósmica acelerada, diversos - modelos teóricos surgiram para explicar a aceleração do Universo. Neste trabalho revisamos modelos tais como a constante cosmológica e quintessência, a qual é modelada por um campo escalar. O contexto aqui apresentado foi elaborado a partir das teorias modificadas da gravitação, também conhecidas como teorias f(R). Tal modelo é considerado uma generalização da ação de Einstein-Hilbert onde termos invariantes de curvatura podem descrever um regime acelerado para o universo. As equações de campo podem ser obtidas a partir de três formalismos distintos, a saber, formalismo métrico, Palatini e métrico-afim. Realizamos algumas manipulações algébricas para esses formalismos, bem como a apresentação das equações de Friedmann generalizadas para o formalismo métrico e Palatini. Também apresentamos um modelo no formalismo métrico com um campo de Maxwell acoplado minimamente. As equações de Friedmann-Maxwell-f(R), as quais dependem da forma funcional de f(R) como também do campo Fµv, permitem que uma equação de estado para w pode ser ajustada em concordância com as medidas do red-shift de supernovas IA.
4

Alguns resultados sobre cordas cósmicas em teorias de gravitação

Barbosa, Denis Barros 11 December 2013 (has links)
Made available in DSpace on 2015-05-14T12:14:12Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1343904 bytes, checksum: e6a827a05ce6f44bfd65a1e4edd24434 (MD5) Previous issue date: 2013-12-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis we obtain the geometry associated with a cosmic string in two different models of modified gravity, namely: f(R) and Gauss-Bonnet theories. We Determined the solutions for static cosmic string and spinning cosmic string, with and without interior structure in f(R) and a static cosmic string in Gauss-Bonnet theory. For the static case, we solved the Dirac equation, and determined the fermionic current. We also found, in the context general theory of relativity, one solution with rotation corresponding to a rotation cloud of strings(Letelier spacetime), by using the method of Newman-Janis. / Nesta tese obtemos a geometria gerada por cordas cósmicas em dois modelos de gravitação modificada, a saber: Teorias f(R) e de Gauss-Bonnet. Determinamos soluções que correspondem ao espaço-tempo gerado pela corda cósmica estática e a corda cósmica com rotação, com e sem estrutura interna em f(R), e a corda cósmica estática na teoria de Gauss-Bonnet. Para as soluções estáticas, resolvemos a equação de Dirac, e determinamos a corrente ferminóica. Encontramos, também, no contexto da Teoria da Relatividade Geral, uma solução com rotação para a nuvem de cordas(Espaço-tempo de Letelier), usando o método de Newman-Janis.
5

Teorias f(R) de gravidade na formula??o de Palatini

Oliveira, Thiago Bruno Rafael de Freiras 01 July 2010 (has links)
Made available in DSpace on 2015-03-03T15:15:24Z (GMT). No. of bitstreams: 1 ThiagoBRFO_DISSERT.pdf: 776732 bytes, checksum: 79a4002c3c2d724d3d1651680816802b (MD5) Previous issue date: 2010-07-01 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R ? fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned G?del model being the best known example of such a solution. Here we show that every perfect-fluid G?del-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the G?del geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on G?del-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the G?del-type perfect-fluid solutions in the f(R) = R?fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the G?del geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of G?del-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique G?deltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of G?del-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality / Nesta disserta??o, ap?s uma breve revis?o sobre a Teoria da Relatividade Geral de Einstein e suas aplica??es para os modelos cosmol?gicos de Friedmann-Lemaitre- Robertson-Walker (FLRW), apresentamos e discutimos as teorias alternativas de gravidade denominadas de gravidade f(R). Estas teorias surgem quando substitu?mos na a??o de Einstein-Hilbert o escalar de curvatura de Ricci R por qualquer fun??o f(R) n?o-linear bem comportada. Elas fornecem uma maneira alternativa para explicar a acelera??o c?smica atual sem necessitar envolver qualquer componente de energia escura ou a exist?ncia de dimens?es espaciais extras. Quando lidamos com gravidade f(R), dois diferentes princ?pios variacionais podem ser seguidos, a saber, o formalismo m?trico e o de Palatini, os quais levam a equa??es de movimento muito diferentes. Descrevemos brevemente o formalismo m?trico e ent?o nos concentramos no princ?pio variacional de Palatini para a a??o da gravidade. Fazemos uma deriva??o sistem?tica e detalhada das equa??es de campo para a gravidade f(R) de Palatini, as quais generalizam as equa??es de Einstein da Relatividade Geral. Em seguida obtemos as equa??es de Friedmann generalizadas, que podem ser usadas para testes cosmol?gicos. Para exemplificar, usamos compila??es recentes de observa??es de supernovas do tipo Ia e mostramos como a classe de teorias de gravidade f(R) = R ? /Rn explica a recente acelera??o observada do universo quando colocamos v?nculos razo?veis sobre os par?metros livres e n. Examinamos tamb?m a quest?o de como teorias f(R) de gravidade em Palatini permitem espa?os-tempos em que a causalidade, um resultado fundamental em qualquer teoria f?sica [22], ? violada. Como ? bem conhecido, na Relatividade Geral existem solu??es para as equa??es de campo que possuem anomalias causais na forma de curvas tipo-tempo fechadas, sendo o modelo de G?del o exemplo mais bem conhecido de tais solu??es. Aqui mostramos que toda solu??o do tipo-G?del de gravidade f(R) em Palatini com fluido perfeito, caracterizado por densidade e press?o p, satisfazendo a condi??o de energia fraca + p 0, ? necessariamente isom?trica ? geometria de G?del, demonstrando, portanto, que essas teorias apresentam anomalias causais na forma de curvas tipo-tempo fechadas. Esses resultados ampliam um teorema sobre modelos tipo-G?del para a estrutura das teorias de gravidade f(R) de Palatini. Derivamos uma express?o para o raio cr?tico rc (al?m do qual a causalidade ? violada) para uma teoria arbitr?ria de gravidade f(R) de Palatini. A express?o encontrada tornou claro que a viola??o da causalidade depende da forma de f(R) e dos componentes do conte?do de mat?ria. Examinamos objetivamente as solu??es tipo-G?del de um fluido perfeito na classe f(R) = R ? /Rn das teorias de gravidade de Palatini e mostramos que, para uma densidade de mat?ria positiva e para e n em um intervalo permitido pelas observa??es, essas teorias n?o admitem como solu??es de suas equa??es de campo a geometria de G?del juntamente com um fluido perfeito. Nesse sentido, teorias de gravidade f(R) remediam a patologia causal na forma de curvas tipotempo fechadas que ? permitido na Relatividade Geral. Examinamos tamb?m essa viola??o de causalidade ao considerar um campo escalar como conte?do material. Para essa fonte, mostramos que a gravidade f(R) em Palatini d? origem a uma ?nica solu??o do tipo-G?del sem viola??o de causalidade. Finalmente, mostramos que a combina??o de um fluido perfeito mais um campo escalar como fontes de geometrias tipo-G?del, levam a solu??es na forma de curvas tipo-tempo fechadas como a solu??es sem viola??o de causalidade
6

A equa??o de Raychaudhuri e o car?ter n?o-atrativo da gravidade f(R)

Santos, Crislane de Souza 24 March 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-07-17T13:08:15Z No. of bitstreams: 1 CrislaneDeSouzaSantos_TESE.pdf: 859033 bytes, checksum: 6c4933c54ee1e77f0ea6be3839fc13c1 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-07-18T14:28:54Z (GMT) No. of bitstreams: 1 CrislaneDeSouzaSantos_TESE.pdf: 859033 bytes, checksum: 6c4933c54ee1e77f0ea6be3839fc13c1 (MD5) / Made available in DSpace on 2017-07-18T14:28:54Z (GMT). No. of bitstreams: 1 CrislaneDeSouzaSantos_TESE.pdf: 859033 bytes, checksum: 6c4933c54ee1e77f0ea6be3839fc13c1 (MD5) Previous issue date: 2017-03-24 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / A evid?ncia observacional da expans?o acelerada do Universo tem sido a principal raz?o para uma revis?o da evolu??o cosmol?gica como previsto pela Relatividade Geral (RG). Atualmente existe duas principais abordagens para resolver este problema: pela introdu??o nas equa??es de Einstein de um termo o qual representa um novo tipo de fluido (a chamada energia escura) possuindo caracter?sticas ex?ticas ou pela modifica??o da teoria de gravita??o. Nesta tese n?s focamos na segunda abordagem, particularmente, as teorias conhecidas como teorias f(R) de gravidade as quais t?m recebido muita aten??o nos ?ltimos anos. Neste contexto, a equa??o de Raychaudhuri permite examinar a estrutura do espa?o-tempo como um todo sem solu??es espec?ficas das equa??es de Einstein, desempenhando assim um papel central para a compreens?o da atra??o gravitacional em Astrof?sica e Cosmologia. Na teoria da Relatividade Geral sem uma constante cosmol?gica, uma contribui??o n?o-positiva da geometria do espa?o-tempo a equa??o de Raychaudhuri ? usualmente interpretada como a manifesta??o do car?ter atrativo da gravidade. Neste caso, condi??es de energia espec?ficas - de fato a condi??o de energia forte - deve ser assumida, a fim de garantir o car?cter atrativo. No contexto das teorias f(R) de gravidade, no entanto, mesmo assumindo as condi??es de energia usuais pode-se ter uma contribui??o positiva para a equa??o de Raychaudhuri. Al?m de nos fornecer uma maneira simples de explicar a observada expans?o acelerada do Universo, este fato abre a possibilidade de um car?ter repulsivo deste tipo de gravidade. Nesta tese n?s abordamos o car?cter atrativo/n?o-atrativo da gravidade f(R) ? luz da equa??o de Raychaudhuri e fazemos uso da condi??o de energia forte, juntamente com estimativas recentes dos par?metros cosmogr?ficos, para colocar limites em uma classe paradigm?tica de teorias f(R) de gravidade. / The observational evidence of the accelerated expansion of the Universe has been the main reason for a revision of the cosmological evolution as predicted by General Relativity (GR). Currently there are two main approaches to solving this problem: by introducing in the Einstein?s equations a term which represent a new kind of fluid (the so-called dark energy possessing exotic features) or by the modification of the gravitation theory. In this thesis we focus on the second approach, particularly the theories know as f(R) theories of gravity, which have received many attention in the last years. In this framework, the Raychaudhuri equation makes possible to examine the whole of spacetime structures without specific solutions of Einstein?s equations, playing so a central role to the understanding of gravitational attraction in Astrophysics and Cosmology. In the general relativity theory of gravity without a cosmological constant, a non-positive contribution from the spacetime to Raychaudhuri?s equation is usually interpreted as manifestation of the attractive character of gravity. In this case, particular energy conditions - indeed the strong energy condition - must be assumed in order to guarantee this attractive character. In the context of f(R) theories of gravity however, even assuming the usual energy conditions we may have a positive contribution to Raychaudhuri?s equation. Besides giving us a simple way to explain the observed accelerated expansion of the Universe, this fact opens the possibility of a repulsive character of this kind of gravity. In this thesis we address the attractive/non-attractive character of f(R) theories of gravity at the light of Raychaudhuri?s equation and make use of the strong energy condition, jointly with recent estimated values for the cosmographic parameters, in order to put bounds on a paradigmatic class of f(R) theories of gravity.

Page generated in 0.0495 seconds