• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pulp Production by Acetosolv Process

Barth, Winfried 17 November 2022 (has links)
Cellulose is the most abundant organic polymer on Earth and a fascinating compound for a vast variety of applications. It is mostly received from wood, thus it is a renewable resource and a CO2 storing material. One of the most important cellulose products are pulp and paper. The major goal of this work was to obtain a material with a high amount of cellulose through a pulping process of wood. Therefore, it is necessary to separate the wood bers and to remove a component of wood, which is called lignin (deligni cation). The conventional way to delignify wood is the Kraft process that causes serval problems like contamination of lignin with sulfur and the emission of toxic volatile sulfur compounds. Hence, there are alternative processes without sulfur, such as the Acetosolv process. It uses simple chemicals like acetic acid and is easy to handle. After cutting a spruce tree (Picea abies L. Karst.), debarking and chipping, the wood chips were cooked in the laboratory. The research included the chemical analysis of the obtained pulp and the manufacturing and testing of paper sheets. The yield of pulp ranged widely due to the di erent parameters of the cooking. FT-IR and Raman spectroscopy were used to observe the decrease of aromatic substances (lignin) and the acetylation of the pulp. With the means of Design of Experiments and statistical analysis the most important factors were identi ed and a mathematical regression model was calculated. The manufactured paper sheets showed good mechanical properties and high transparency. Finally, the Acetosolv process could be considered as a contribution to the upcoming bio-based economy because, in addition to the cellulose bers, the industry would be capable of adding value utilization of the separated lignin. It could be one step to a more sustainable paper and pulp production.
2

Acetosolv delignification of Dichrostachys cinerea biomass for ethanol production

Prabhakar Soudham, Venkata January 2009 (has links)
The interest in production of fuel ethanol from lignocellulosic materials is continuouslyincreasing due to the urgency of finding non-food substrates for production of bio-fuels.Marabou (Dichrostachys cinerea) is one of the abundant lignocellulosic bio-resources in Cuba,and it could be useful to produce bio-ethanol. Pre-treatment is an important step to produceethanol from lignocellulosic materials since it allows the separation of cellulose, hemicelluloseand lignin, and activates cellulose towards enzymatic hydrolysis. During the past few years,organosolv methods have been reported for effective separation of the main components oflignocellulosic materials and improvement of the enzymatic hydrolysis of cellulose. By usingacetosolv method lignin is separated under mild conditions and many of the lignin properties arewell preserved.The present work was aimed to perform a chemical characterisation of marabou biomass and toevaluate acetosolv delignification of the material. In this work the content of moisture, ash,extractives, easy-to-hydrolyze polysaccharides, difficult-to-hydrolyze polysaccharides, andKlason lignin of marabou biomass were analyzed. Klason lignin of the marabou biomass was23.4% of the mass. Acetosolv delignification was performed at normal boiling temperature(NBT) and 121oC, using 50-50, 70-30 and 90-10 acetic acid – water mixtures with 10% of solidsload during 1h. Hydrochloric acid (0.2g / 100g of mixture) was used as catalyst. Thedelignification of marabou biomass was also evaluated for the combination of dilute acid prehydrolysis(DAPH) and acetosolv with the same reaction conditions. This investigation provedthat acetosolv pretreatment was effective for solubilizing lignin contained in marabou biomass.The degree of lignin solubilisation increased with increasing acetic acid concentration in thereaction mixture. Lignin removals above 80% were achieved consistently both at NBT and121oC with 90% acetic acid, while only around 44.6 and 6.8% of the initial lignin was removedusing, respectively, 70 and 50% acetic acid at 121oC. The effect of temperature ondelignification was only marginal when acetosolv was conducted with 90% acetic acid, but itwas remarkable for lower acetic acid concentrations. A two-fold decrease of lignin removal wasobserved for the NBT acetosolv compared with the process performed at 121oC using both 70and 50% acetic acid. The insertion of a DAPH step prior to acetosolv considerably improvedlignin removal using 70 and 50% acetic acid at both temperatures, but its effect on the processesusing 90% acetic acid was minimal. High lignin yields were achieved upon its precipitation fromacetosolv liquors.
3

Lignosulfonates production from lignin extracted sugarcane bagasse / ProduÃÃo de Lignossulfonatos a Partir da Lignina ExtraÃda do BagaÃo da Cana-de-AÃÃcar

Francisca Gleyciara Cavalcante Pinheiro 10 October 2014 (has links)
Universidade Federal do Cearà / The present work aimed at the production of lignosulfonate, based in the lignin extracted from sugarcane bagasse-cane for using in phenolic resins. The extraction of lignin was carried out using the acetosolv process, which was optimised with a central composite design 22 to evaluate the effects of reaction time and temperature on the extraction yield, weight-average (M ̅w) and number-average (M ̅n) molecular weights, relative content of total hydroxyl, phenolic hydroxyl and methoxyl groups. The lignins obtained under conditions that maximized the extraction yield and showed better structural and thermal characteristics were sulfonated to obtain the lignosulfonates. The structural and thermal characteristics of the lignins and lignosulfonates were determined by FT-IR, GPC, 1H-NMR and 13C-NMR, DSC and TGA. The results show that the best extraction yield (64.5%) was obtained with 95% (w/w) of acetic acid, the addition of 0.1% HCl, at a temperature of 187 ÂC and reaction time of 40 min. However, with the same concentration of acetic acid and reaction time of 15 min at 187 ÂC, the extraction yield decreased to 55.6%  4.5%, without significant reduction. Furthermore, the increase in temperature of 187 ÂC to 205 ÂC was not enough to cause a significant increase in the relative content of hydroxyls and reduction of the relative content of methoxyl. These results show that the most appropriate conditions for adequate extraction of lignin for application in resins are: 95% (w/w) of acetic acid, addition of 0.1% of HCl, temperature of 187 ÂC and reaction time of 15 min. The acetosolv lignins showed p-hidroxifenila units as major constituent, higher thermal stability and higher purity than the commercial Kraft lignin. The glass transition temperature of the Kraft lignins was lower than that of the acetosolv lignin. This is due to the hydrophilic character and the presence of carbohydrates in the Kraft lignin. The lignosulfonates obtained in this study showed structural characteristics suitable for application in phenolic resins, because they showed high reactivity due to the greater presence of p-hidroxifenila units as major constituent, low molecular weights (40234878 g/mol), greater stability and greater purity compared to commercial sodium lignosulfonate. Therefore, lignosulfonates obtained in this work are more suitable for use in phenolic resins than commercial sodium lignosulfonate used for comparison. / O presente trabalho teve por objetivo a produÃÃo de lignossulfonato, a partir da lignina extraÃda do bagaÃo da cana-de-aÃÃcar para aplicaÃÃo em resinas fenÃlicas. Foi realizada a otimizaÃÃo da extraÃÃo da lignina do bagaÃo de cana-de-aÃÃcar utilizando o processo acetosolv. Para tanto, empregou-se um delineamento composto central 22 para analisar os efeitos do tempo de reaÃÃo e da temperatura no rendimento de extraÃÃo, massa molar ponderal mÃdia, massa molar numÃrica mÃdia, e conteÃdo relativo de hidroxilas totais, hidroxilas fenÃlicas e metoxilas. As ligninas obtidas nas condiÃÃes que maximizaram o rendimento de extraÃÃo e que mostraram melhores caracterÃsticas estruturais e tÃrmicas foram sulfonadas para obtenÃÃo dos lignossulfonatos. As caracterÃsticas estruturais e tÃrmicas das ligninas e dos lignossulfonatos foram determinadas por FT-IR, GPC, RMN-1H e 13C, TGA e DSC. Os resultados mostram que o melhor rendimento de extraÃÃo (64,5 % 4,2%) foi obtido com 95% (m/m) de Ãcido acÃtico, adiÃÃo de 0,1% de HCl, a uma temperatura de 187 C e tempo de reaÃÃo de 40 min. No entanto, com a mesma concentraÃÃo de soluÃÃo de Ãcido acÃtico e com tempo de reaÃÃo de 15 min a 187ÂC, o rendimento de extraÃÃo diminuiu para 55,6%  4,5%, nÃo sendo significativa esta reduÃÃo. AlÃm disto, a elevaÃÃo da temperatura de 187ÂC para 205ÂC nÃo foi suficiente para causar um aumento significativo no conteÃdo relativo de hidroxilas e reduÃÃo do conteÃdo relativo de metoxila. Esses resultados mostram que as condiÃÃes mais adequadas para extraÃÃo da lignina a ser aplicada em resinas sÃo: 95% (m/m) de Ãcido acÃtico, adiÃÃo de 0,1% de HCl, temperatura de 187 C e tempo de reaÃÃo de 15 min. As ligninas acetosolv apresentaram unidades p-hidroxifenila como constituinte majoritÃrio, maior estabilidade tÃrmica e maior pureza em relaÃÃo à lignina Kraft comercial. A temperatura de transiÃÃo vÃtrea da lignina Kraft foi menor do que à das ligninas acetosolv, devido à sua caracterÃstica hidrofÃlica e à presenÃa de carboidratos na lignina Kraft. Os lignossulfonatos obtidos no presente trabalho apresentaram caracterÃsticas estruturais adequadas para aplicaÃÃo em resinas fenÃlicas, pois mostraram alta reatividade devido a maior presenÃa de unidades p-hidroxifenila como constituinte majoritÃrio, baixas massas molares (4023 a 4878 g/mol), maior estabilidade e uma maior pureza em relaÃÃo ao lignossulfonato de sÃdio comercial. Portanto, os lignossulfonatos obtidos no presente trabalho sÃo mais adequados para aplicaÃÃo em resinas fenÃlicas do que o lignossulfonato de sÃdio comercial utilizado no presente trabalho.
4

Fractionation of the main components of barley spent grains from a microbrewery

Zeraatkar Dehnavi, Gholamali January 2009 (has links)
Barley spent grain, the main residue of the brewing industry, is a lignocellulosic material, which could be considered a potential raw material for ethanol production. In this work, spent grains generated in a microbrewery were fractionated by acid hydrolysis and delignification. The investigated sort of barley spent grains had high carbohydrate content, accounting for 60% of the dry matter, while its lignin content was lower than that reported for other sorts of spent grains. Since the used spent grains contained residual starch different treatment approaches were used for separating their main components without affecting the sugars generated by starch hydrolysis. Two kinds of acid hydrolysis processes, namely single-step and two-step hydrolysis, were used for solubilising the carbohydrate fraction. Single-step hydrolysis was performed either at 100oC or at 121oC. In the two-step approach, a second hydrolysis, at 121oC, was performed after the first hydrolysis step. The dilute-acid hydrolysis at 100oC removed all the starch, whereas the hydrolysis at 121oC removed also a part of the hemicelluloses in addition to starch. During the second hydrolysis step, the content of easily hydrolysable polysaccharides decreased from 32.5 to 7.6% in the material pre-hydrolyzed at 100oC and from 20.3 to 10.6% in the material pre-hydrolyzed at 121oC. The amount of easily hydrolysable polysaccharides removed in the second step corresponded to 83% and 81.5% of the total removed matter in the materials pre-hydrolyzed at 100 and 121oC, respectively. In the next step, acetosolv and alkaline delignification, either alone or combined with acid hydrolysis, were used for dissolving the lignin fraction. A higher solubilisation occurred after alkaline delignification, where 83% of the initial material was removed. Only 34% of the initial lignin was removed by direct acetosolv, while the combined acid hydrolysis/acetosolv approach resulted in lignin removal between 70 and 75%. However, the resulted pulp still contained important amount of lignin. The acid prehydrolysis was also beneficial for alkaline delignification, but the effect was less noticeable than for acetosolv. Lignin removal increased from 95% in direct alkaline delignification to nearly 100% in the acid hydrolysis-assisted alkaline treatment. Two different methods were carried out for lignin precipitation. In the liquid fraction obtained by acetosolv, lignin was precipitated by water addition after concentration of the liquors to 75% of the initial volume. Although the visual inspection of the liquors after water addition revealed a relatively good lignin precipitation, the separation by filtration of the precipitated material was difficult, apparently due to the small particle size of precipitated lignin molecules. Some improvement was observed for the combined treatments, especially for those including two-step acid hydrolysis. The best recovery, 54% of the precipitated lignin, occurred for the process including consecutive acid hydrolyses at 100 and then at 121oC before acetosolv. In the alkaline liquors, lignin was precipitated by pH adjustment to 2.0 by HCl. Around 40.5% of the solubilised lignin was precipitated, and it increased to 85-100% when combined treatments were applied. The best results were achieved upon the treatment including acid prehydrolysis at 121oC before alkaline process.
5

Extraction, characterization and utilization of lignin from the coconut bark in polyurethane / ExtraÃÃo, caracterizaÃÃo e utilizaÃÃo da lignina da casca do coco verde em poliuretano

Luiz FlÃvio Luciano de Melo 23 August 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / The coconut (Cocos nucifera) is a tropical fruit of high economic power in the Brazilian sphere being consumed largely in an immature stage that presents with a significant volume of coconut water. Associated with this market performance, it is remarkable the considerable amount of waste that this fruit when is consumed. The shell represents about 85% of the gross weight of the fruit and is associated with an increased resistance to degradation. The accumulation of this material contributes to the life of landfills decreases, making the problem of concern. Inserted in this issue of the reuse of biomass, coconut has been studied intended to application of high performance. Its physicochemical characterization was performed bringing the percentage of insoluble lignin result in the order of 28.27% which makes it compatible for extraction of this component. In this study, lignin was extracted from green coconut fiber for subsequent use in polyurethane. Targeting a process that does not destroys the fraction of sugars present, the process used to extract lignin was organosolv using acetic acid. The treatment showed an appreciable maximum yield of 78%, which can enable full utilization of the coconut fiber within a biorefinery approach. The lignin extracted by the method acetosolv was used as a source of hydroxyl for the production of polyurethane, since lignin is a amorphous aromatic polyphenol. Analysis by Nuclear Magnetic Resonance of Hydrogen (1H NMR) and Infrared (FTIR) showed characteristic profiles of lignin showing the extraction method was suitable for extraction of lignin. Polyurethane samples produced showed two degradation events in the ranges of 325  C and 400  C respectively, which is in agreement with the literature. Analysis by High Performance Liquid Chromatography of the solvent extraction and precipitation of lignin effluent showed the presence of furfural and hydroxymethylfurfural, where the first had a good production level of 604 mg in 10 g of coconut fiber. Thermal and spectroscopic characterizations were used to explore the behavior of the polyurethanes obtained. / O coco (cocos nucÃfera) à uma fruta tropical de elevado poder econÃmico na esfera brasileira, sendo consumido largamente no estado imaturo, fase em que se apresenta com um expressivo volume de Ãgua em seu interior. Associado a este desempenho mercadolÃgico, à notÃvel o enorme volume de resÃduo que este fruto deixa quando consumido. A casca corresponde a cerca de 85% do peso bruto do fruto e à associada a elevada resistÃncia à degradaÃÃo. O acÃmulo deste material contribui para que a vida Ãtil de aterros sanitÃrios diminua, tornando o problema preocupante. Inserido nesta temÃtica de reaproveitamento de biomassa, o coco foi estudado para se propor uma aplicaÃÃo de alto desempenho. A caracterizaÃÃo fÃsico-quÃmica do mesmo foi realizada, obtendo-se resultado percentual de lignina insolÃvel da ordem de 28,27% o que o torna compatÃvel para extraÃÃo deste componente. No presente trabalho, lignina foi extraÃda de fibras de coco verde para posterior utilizaÃÃo em poliuretano. Visando um processo que nÃo inutilizasse a fraÃÃo de aÃÃcares presentes, o processo utilizado para extraÃÃo de lignina foi o organossolve com a utilizaÃÃo de Ãcido acÃtico. O tratamento realizado mostrou um rendimento mÃximo apreciÃvel de 78%, o que pode possibilitar o aproveitamento integral da fibra de coco dentro de uma abordagem de biorrefinaria. A lignina extraÃda pelo processo acetossolve, foi utilizada como fonte de hidroxilas para produÃÃo de poliuretano, uma vez que a lignina consiste em um polifenol aromÃtico amorfo. As anÃlises por RessonÃncia MagnÃtica Nuclear de HidrogÃnio (NMR 1H) e Infravermelho (FTIR) apresentaram perfis caracterÃsticos da lignina, mostrando que o mÃtodo empregado foi adequado para a sua extraÃÃo. As amostras de poliuretano produzidas presentaram dois eventos de degradaÃÃo nas temperaturas de 325ÂC e 400ÂC, o que està de acordo com a literatura. A anÃlise por Cromatografia LÃquida de Alta EficiÃncia do solvente de extraÃÃo e do efluente de precipitaÃÃo da lignina mostrou a presenÃa de furfural e hidroximetilfurfural onde o primeiro apresentou um bom nÃvel de produÃÃo de 604mg em cada 10 g de fibra de coco. A termogravimetria mostrou 2 eventos caracterÃsticos de degradaÃÃo na regiÃo de 320 e 400ÂC e a anÃlise por FTIR mostrou uma reaÃÃo completa de grupos isocianatos.

Page generated in 0.0353 seconds