• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Petrology and Geochemistry of Olivine-Bearing Diogenites and a Group of Paired Howardites

Beck, Andrew William 01 August 2011 (has links)
Asteroid 4 Vesta, the largest differentiated body in the asteroid belt, is a protoplanet, much like those that accreted to form the Earth. Understanding the geology of Vesta furthers understanding of early differentiation processes that occurred on Earth and helps define igneous processes occurring on other differentiated bodies in the early solar system. Howardite, eucrite and diogenite (HED) meteorites, which are thought to have originated from Vesta, can be analyzed to better understand the geology of that asteroid. Here my colleagues and I investigate the petrology and geochemistry of two groups of HEDs. This work is timely, in that the insights gained from these studies can be used to interpret data from the Dawn spacecraft, which has just been placed into orbit around Vesta. In the first four parts of this dissertation we investigate the origin of olivine in diogenites, which are ultramafic cumulates from Vesta. We discover that the majority of these samples are dimict (two-component) breccias, composed of harzburgitic and orthopyroxenitic lithologies. This is contrary to the traditional belief that all diogenites are orthopyroxenites with small amounts of cumulus olivine. Using bulk and in situ trace element chemistries, along with mineral major/minor element compositions, we demonstrate that these two lithologies were likely related through fractional crystallization. We also examine an anomalous achondritic dunite, and use geochemistry and petrology to demonstrate that it is the first recognized dunite belonging to the HED group. This sample likely also fractionated from a melt prior to the fractionation of harzburgitic and orthopyroxenitic diogenites. In the final part of this dissertation, we investigate compositional and textural heterogeneity in a large group of paired howardites, Vestan regolith breccias composed of diogenite and eucrite. We find significant compositional and textural variation within the group, and a preferential distribution of eucritic material in the finer grain sizes. This suggests an immature regolith, and has implications for interpretation of spectral data to be collected by the Dawn orbiter at Vesta.
2

The Search for the Missing Mantles of Differentiated Asteroids: Evidence from Taxonomic A-class Asteroids and Olivine-Dominated Achondrite Meteorites

Lucas, Michael Peter 01 January 2011 (has links)
The apparent rarity of taxonomic A-class asteroids poses a significant paradox for understanding asteroid differentiation and the dynamical evolution of the early solar system. Based on results from asteroid taxonomic surveys, and on the abundances and mineralogy of different achondrite meteorites, it appears that olivine-dominated mantle remnants are missing from both the asteroid population and in meteorite collections. Several scenarios to explain this paradox have been proposed: (1) olivine mantle material has been stripped away by collisions and only remains as small fragments (< ~5 km), (2) A-class asteroids are abundant but have been altered in some way masking their presence, or (3) differentiated asteroids did not form thick olivine-rich mantles. We have approached these questions through the collection of taxonomic and observational data on known A-class asteroids, and the geochemical characterization of olivine grains from pallasite and ureilite igneous meteorites. Examination of four taxonomic surveys reveals discrepancies in the classification of A-class objects. Recent data with spectral coverage to 2.45 μm have reclassified some asteroids previously thought to belong to the class. Data complied from these taxonomies reveal only 17 A-class asteroids out of ~2100 individual objects surveyed (<1%). Physical and orbital characteristics of A-class asteroids indicate that the majority are small (<13 km) collisional fragments that reside in orbits interior to, or within the inner main-belt. Photometric observations of five A-class asteroids obtained during this study have constrained the rotational periods of, 246 Asporina, 289 Nenetta, 446 Aeternitas, 1600 Vyssotsky, and the Mars-crossing asteroid 1951 Lick. Robust photometric data for 446 Aeternitas collected over three apparitions yielded a precise rotation period (15.737496 ± 0.000005 h) and a pole orientation of Β = 49º, and λ = 342º. A shape model produced from these data revealed that 446 Aeternitas has a distinctly angular shape suggestive of a collisional fragment. Olivine compositions between our pallasite meteorites span a narrow range (Fa10.5 - Fa13.4), while the ureilite olivine compositions, generally more fayalitic, display wide variations in the eight examined meteorites (Fa8.5 - Fa22.1). Major and trace element behavior in olivines from pallasite meteorites is consistent with a model of slow, in situ cooling and crystallization, allowing for near-equilibrium exchange between crystallizing olivines and coexisting silicate and FeNi melt, preserving near-uniform olivine major element compositions, and limited trace element variation. Trace element signatures of ureilite silicates (olivine and pigeonite) show large variations, consistent with residual solids from fractional melting processes. Ureilite olivines are uniformly more enriched in both compatible lithophile and siderophile elements (Ca, Li, Sc, V, Cr, Ni, and Mn) than pallasite olivines. corroborating models for ureilite petrogenesis as low-degree partial melting residues in the absence of an FeNi melt phase. Uniformity of elemental signatures among different pallasites point to a chemically homogeneous parent body.
3

Origin and evolution of ureilite vein metal - Fe, Ni, Co and Ni-isotope systematics of ureilite vein metal and ureilite silicates

Gabriel, Aron David 30 October 2009 (has links)
No description available.

Page generated in 0.0369 seconds