• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pseudo-lignin chemistry in pretreatment of biomass for cellulosic biofuel production

Hu, Fan 12 January 2015 (has links)
Pseudo-lignin, which can be broadly defined as aromatic material that yields a positive acid-insoluble (Klason) lignin value, has been reported to generate from biomass polysaccharides during dilute acid pretreatment (DAP). To investigate the fundamental chemistry of pseudo-lignin, a series of state-to-art analytical techniques including GPC, FT-IR and ¹³C NMR were applied to characterize pseudo-lignin extracted from poplar α-cellulose and holocellulose after DAP. The results showed that pseudo-lignin is polymeric (Mn ~ 1000 g/mol; Mw ~ 5000 g/mol) and consists of carbonyl, carboxylic, aromatic, methoxy and aliphatic structures, which can be produced from both dilute acid-treated cellulose and hemicellulose. During DAP, the hydrolysis of polysaccharides, which leads to some release of monosaccharides, and their subsequent dehydration reactions to form furfural and 5-hydromethylfurfural (HMF) takes place. Further rearrangements of furfural and/or HMF can produce aromatic compounds, which undergo further polymerization and/or polycondensation reactions to form pseudo-lignin. More importantly, pseudo-lignin was revealed to bind with cellulase enzymes unproductively and significantly retard enzymatic conversion of cellulose. As compared to native lignin after DAP, the inhibition effect arise from pseudo-lignin is much stronger, which clearly indicates pseudo-lignin formation should be avoided during DAP. Process optimization study indicated that addition of dimethyl sulfoxide (DMSO) to the DAP reaction medium can effectively increase sugar recovery and reduce pseudo-lignin formation, even under high-severity pretreatment conditions. The pseudo-lignin suppression property of DMSO has been attributed to the preferential arrangement of DMSO in the vicinity of the C1 carbon of the HMF molecule, thereby protecting HMF from further reactions to form pseudo-lignin.
2

Estudo do pré-tratamento do bagaço de cana-de-açúcar e caracterização físico-química

Morais, Alaine Patrícia da Silva [UNESP] 27 August 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:39Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-08-27Bitstream added on 2014-06-13T19:31:25Z : No. of bitstreams: 1 morais_aps_me_botfca.pdf: 687506 bytes, checksum: baad0742c0a39bca3a4a2b5908c9cedf (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O bioetanol é um combustível produzido por meio da fermentação do açúcar do caldo da cana, que representa apenas um terço do carbono (energia), presente na planta. Atualmente, estão sendo feitos esforços para o aproveitamento do restante da biomassa, divididos entre as folhas e bagaço do colmo. Esta biomassa lignocelulósica poderia ser aproveitada para produção de etanol, desde que submetida a processos hidrolíticos químicos (ácidos e bases) e enzimáticos gerando açúcares fermentescíveis. Pela fermentação alcoólica é possível a produção de etanol a partir da mistura de açúcares liberados. Neste trabalho procurou-se a padronização de procedimentos para avaliar o pré-tratamento físico e químico do bagaço da cana-de-açúcar, aliado a diferentes tratamentos térmicos a partir de duas granulometrias de bagaço (1,1 e 2,5 mm). Para o delineamento experimental, utilizou-se tratamentos ajustados em fatorial 4 X 5, sendo que as variáveis foram a influência do tempo de pré-tratamento (0, 15, 30, 45 e 60 minutos) e concentração de ácido sulfúrico (H2SO4) a 7 e 9%. Estes fatores exerceram influência sobre o desempenho da pré-hidrólise, medido pela liberação açúcares redutores (AR) na solução e a % de espécies químicas no bagaço prétratado / Bioethanol fuel is produced through the fermentation of sugar cane juice, which representes only a third of the carbon (energy) present in the plant. Currently, efforts are being made to the use of the remaining biomass, divided among the leaves and seed stalk. This lignocellulosic biomass could be used for ethanol production, provided that undergo hydrolytic process chemicals (acids and bases) and enzymatic generating fermentable sugars. For fermentation is possible to produce ethanol from mixed sugars released. This research is the standardization of procedures to assess the pre-treatment physical and chemical properties of bagasse from sugar cane, coupled with different thermal treatments from two particle sizes of mulch (1,1 and 2,5 mm). For this experiment, we used adjusted treatments in a factorial 4 x 5, and the variables were the influence of time of pretreatment (0, 15, 30, 45 and 60 minutes) And concentration of sulfuric acid (H2SO4) 7 and 9%. These factors have exerted influence on the performance of pre-hydrolysis, measured by the release sugars (RS) in the solution, and% of chemical species in the pretreated bagasse
3

Effect of lignin content and structural change during treatment on poplar for biofuel and biomaterial production

Sun, Qining 27 May 2016 (has links)
Understanding the lignin effect and related structural parameters relevant to the recalcitrance of the plant cell wall and the individual and cooperative effects on enzymatic saccharification are vital for improving current processing and conversion methods for cellulosic biofuels. Data were collected from several pretreatment technologies (Hot-water, organo-solv, lime, lime-oxidant, dilute acid, and dilute acid-oxidant pretreatments) on cellulose ultrastructure, partial delignification followed by dilute acid pretreatment, dilute acid pretreatment of enzymatic isolated lignin, and melt rheology test of organo-solv lignin. Results showed minimal cellulose ultrastructural changes occurred due to lime and lime-oxidant pretreatments, which however especially at short residence time displayed relatively high enzymatic glucose yield. Dilute acid and dilute acid-oxidant pretreatments resulted in the largest increase in cellulose crystallinity, para-crystalline, and cellulose-Iβ allomorph content as well as the largest increase in cellulose microfibril or crystallite size. Organo-solv pretreatment generated the highest glucose yield, which was accompanied by the most significant increase in cellulose microfibril or crystallite size and decrease in relatively lignin contents. Lignin acted as a barrier which restricted cellulose crystallinity increase and cellulose crystallite growth during dilute acid pretreatment, and that partial delignification instead of complete lignin removal during DAP would benefit the increase of sugar yield. Furthermore, a deeper understanding of the structural change of lignin in the absence of cellulose-hemicellulose matrix during dilute acid pretreatment confirmed that delignification had the most beneficial effect in poplar, but for switchgrass was the xylan removal. In addition, investigation on the structural change of organo-solv lignin during melt rheology test indicated that high purity lignin isolated from plant biomass with the lowest S/G (syringyl/guaiacyl) ratios will exhibit superior processing performance characteristics to produce high-quality carbon fibers. These findings can aid both in the development of improved enzymes that contain activities to decompose recalcitrant structures and in the design of various processing conditions that efficiently convert specific biomass feedstock into sugars. They can also help in the design of new chemical modifications on lignin and innovative biosynthesis strategies for producing linear-fiber-forming lignin with high-performance.
4

Otimização do pré-tratamento ácido de bagaço de cana para a sua utilização como substrato na produção biológica de hidrogênio / Optimization of acid pretreatment of sugarcane bagasse for use as substrate in biological hydrogen production

Lorencini, Patricia 11 April 2013 (has links)
O bagaço de cana de açúcar é um resíduo lignocelulósico que, após a sua hidrólise, pode ser utilizado como substrato para a produção de hidrogênio (H2) por fermentação. O objetivo deste trabalho foi realizar pré-tratamentos do bagaço de cana com os ácidos clorídrico (HCl) e fosfórico (H3PO4) para a solubilização de carboidratos, produzindo o mínimo de inibidores, bem como para tornar a sua estrutura mais suscetível à hidrólise enzimática. Além disso, foi verificada a possibilidade de utilização dos hidrolisados na produção biológica de H2 por uma cultura mista de micro-organismos. A otimização das condições de pré-tratamento com os ácidos foi feita por meio de um planejamento experimental, variando-se a concentração entre 0,64 e 7,36 % (m/v), a temperatura de 63,20 a96,80°C e o tempo de 38,40 a 441,60 min. Nos hidrolisados obtidos foram determinadas as concentrações de açúcares redutores totais (ART) e de monossacarídeos, tais como a glicose, a xilose e a arabinose, além de potenciais inibidores de fermentação, o furfural, o hidroximetilfurfural (HMF) e o ácido acético. As condições de pré-tratamento do bagaço, nas quais foram obtidas as maiores concentrações de ART (13,88 g/L) foi utilizando 6,0 % (m/v) de HCl, em 360,00 min., a 90°C. Entretanto, sob estas condições, também foram detectadas as concentrações mais elevadas dos inibidores. A condição ótima para a hidrólise com o HCl, obtida através da análise estatística, na qual a concentração de inibidores foi minimizada e a de ART maximizada foi de 96,80ºC, 441,6 min e 7,36 % (m/v) de ácido. Para o pré-tratamento com o H3PO4, as condições ótimas foram as mesmas encontradas para o HCl, obtendo-se 4,98 g/L de ART. Os bagaços pré-tratados foram submetidos à hidrólise enzimática com a enzima Celluclast® e um extrato enzimático bruto com atividade de xilanases. A maior concentração de ART (20,98 g/L) obtida pelas duas hidrólises (ácido/enzimática) foi no bagaço pré-tratado com HCl no tempo de 360,00 min., 6,0 % (m/v) de ácido a 90°C, o qual também apresentou a maior concentração de inibidores (total de 1,23 g/L). O hidrolisado obtido com HCl que apresentou maior concentração de ART foi utilizado em ensaios de fermentação para a produção de H2 por cultura mista. / Sugarcane bagasse is a lignocellulosic residue that can be used as substrate to produce hydrogen (H2) by fermentation after hydrolysis. This study aimed to optimize the pretreatment of sugarcane bagasse with hydrochloric acid (HCl) and phosphoric acid (H3PO4), to solubilize carbohydrates and produce the minimal amount of inhibitors as well as make its structure more susceptible to enzymatic hydrolysis. In addition, we verified the possibility of using hydrolysates in the biological production of H2 by a mixed culture of microorganisms. We optimized the conditions for bagasse pretreatment with acids using an experimental designwe varied the concentration between 0.64 and 7.36% (w/v), the temperature from 63.20 to 96.80 °C, and the time from 38.40 to 441.60 min. In the hydrolysates, we determined the concentrations of total reducing sugars (TRS); monosaccharides such as glucose, xylose, and arabinose; and potential inhibitors of fermentation like furfural, hydroxymethylfurfural (HMF), and acetic acid. The conditions of bagasse pretreatment 6.0% (w/v) HCl, 360 min. and 90 °C led to the highest TRS concentrations (13.88 g L-1), but also to the highest concentrations of inhibitors. Statistical analysis revealed that the optimum conditions for the hydrolysis of sugar cane bagasse with HCl that minimized the concentration of inhibitors while maximizing the TRS concentration were: 96.80 °C, 441.6 min, and 7.36% (w/v) of acid. The optimum conditions for pre-treatment with H3PO4 were the same as those found for HCl; which yielded 4.98 g L-1 TRS. We subjected the pretreated bagasse to enzymatic hydrolysis with Celluclast® enzyme and to a crude enzyme extract with xylanase activity. For both hydrolyses (acid and enzymatic), the highest TRS concentration (20.98 g L-1) was achieved with the bagasse pretreated with HCl 6.0% (w/v) at 90 °C for 360.00 min., which also furnished the highest concentration of inhibitors (total 1.23 g L-1). The hydrolysate obtained with HCl contained higher TRS concentration was used as substrate in fermentation assays for the production of H2 by mixed culture.
5

Sustainable Production of Bio-based Succinic Acid from Plant Biomass

Lo, Enlin 24 June 2018 (has links)
Succinic acid is a compound used for manufacturing lacquers, resins, and other coating chemicals. It is also used in the food and beverage industry as a flavor additive. It is predominantly manufactured from petrochemicals, but it can also be produced more sustainably by fermentation of sugars from renewable feedstocks (biomass). Bio-based succinic acid has excellent potential for becoming a platform chemical (building block) for commodity and high-value chemicals. In this study, we focused on the production of bio-based succinic acid from the fiber of sweet sorghum (SS), which has a high fermentable sugar content and can be cultivated in a variety of climates and locations around the world. To avoid competition with food feedstocks, we targeted the non-edible ‘bagasse’, which is the fiber part after extracting the juice. Initially, we studied various conditions of pretreating SS bagasse to remove most of the non-fermentable portions and expose the cellulose fibers containing the fermentable sugars (glucose). Concentrated (83%) phosphoric acid was utilized at mild temperatures of 50-80 °C for 30-60 minutes at various bagasse loadings (10-15%) using a partial factorial experimental design. After pretreatment, the biomass was subjected to enzymatic hydrolysis with commercial cellulase enzyme (Cellic® Ctec2) to identify the pretreatment conditions that lead to the highest glucose yield that is critical for the production of succinic acid via fermentation with the bacterium Actinobacillus succinogenes. As the pretreatment temperature and duration increased, the bagasse color changed from light brown to dark brown-black, indicating decomposition, which ranged from 15% to 72%. The pretreatment results were fitted with an empirical model that identified 50 °C for 43 min at 13% solids loading as optimal pretreatment conditions that lead to the highest glucose release from sweet sorghum bagasse. Biomass pretreated at those conditions and subjected to separate enzymatic hydrolysis and fermentation with A. succinogenes yielded almost 18 g/L succinic acid, which represented 90% of the theoretical yield, a very promising performance that warranties further investigation of bio-based succinic acid production from sweet sorghum bagasse, as a more sustainable alternative to succinic acid produced from fossil sources, such as oil.
6

Estudo do pré-tratamento do bagaço de cana-de-açúcar e caracterização físico-química /

Morais, Alaine Patrícia da Silva, 1980. January 2010 (has links)
Orientador: Fernando Broetto / Banca: José Pedro Serra Valente / Banca: Luciana Francisco Fleuri / Resumo: O bioetanol é um combustível produzido por meio da fermentação do açúcar do caldo da cana, que representa apenas um terço do carbono (energia), presente na planta. Atualmente, estão sendo feitos esforços para o aproveitamento do restante da biomassa, divididos entre as folhas e bagaço do colmo. Esta biomassa lignocelulósica poderia ser aproveitada para produção de etanol, desde que submetida a processos hidrolíticos químicos (ácidos e bases) e enzimáticos gerando açúcares fermentescíveis. Pela fermentação alcoólica é possível a produção de etanol a partir da mistura de açúcares liberados. Neste trabalho procurou-se a padronização de procedimentos para avaliar o pré-tratamento físico e químico do bagaço da cana-de-açúcar, aliado a diferentes tratamentos térmicos a partir de duas granulometrias de bagaço (1,1 e 2,5 mm). Para o delineamento experimental, utilizou-se tratamentos ajustados em fatorial 4 X 5, sendo que as variáveis foram a influência do tempo de pré-tratamento (0, 15, 30, 45 e 60 minutos) e concentração de ácido sulfúrico (H2SO4) a 7 e 9%. Estes fatores exerceram influência sobre o desempenho da pré-hidrólise, medido pela liberação açúcares redutores (AR) na solução e a % de espécies químicas no bagaço prétratado / Abstract: Bioethanol fuel is produced through the fermentation of sugar cane juice, which representes only a third of the carbon (energy) present in the plant. Currently, efforts are being made to the use of the remaining biomass, divided among the leaves and seed stalk. This lignocellulosic biomass could be used for ethanol production, provided that undergo hydrolytic process chemicals (acids and bases) and enzymatic generating fermentable sugars. For fermentation is possible to produce ethanol from mixed sugars released. This research is the standardization of procedures to assess the pre-treatment physical and chemical properties of bagasse from sugar cane, coupled with different thermal treatments from two particle sizes of mulch (1,1 and 2,5 mm). For this experiment, we used adjusted treatments in a factorial 4 x 5, and the variables were the influence of time of pretreatment (0, 15, 30, 45 and 60 minutes) And concentration of sulfuric acid (H2SO4) 7 and 9%. These factors have exerted influence on the performance of pre-hydrolysis, measured by the release sugars (RS) in the solution, and% of chemical species in the pretreated bagasse / Mestre
7

Otimização do pré-tratamento ácido de bagaço de cana para a sua utilização como substrato na produção biológica de hidrogênio / Optimization of acid pretreatment of sugarcane bagasse for use as substrate in biological hydrogen production

Patricia Lorencini 11 April 2013 (has links)
O bagaço de cana de açúcar é um resíduo lignocelulósico que, após a sua hidrólise, pode ser utilizado como substrato para a produção de hidrogênio (H2) por fermentação. O objetivo deste trabalho foi realizar pré-tratamentos do bagaço de cana com os ácidos clorídrico (HCl) e fosfórico (H3PO4) para a solubilização de carboidratos, produzindo o mínimo de inibidores, bem como para tornar a sua estrutura mais suscetível à hidrólise enzimática. Além disso, foi verificada a possibilidade de utilização dos hidrolisados na produção biológica de H2 por uma cultura mista de micro-organismos. A otimização das condições de pré-tratamento com os ácidos foi feita por meio de um planejamento experimental, variando-se a concentração entre 0,64 e 7,36 % (m/v), a temperatura de 63,20 a96,80°C e o tempo de 38,40 a 441,60 min. Nos hidrolisados obtidos foram determinadas as concentrações de açúcares redutores totais (ART) e de monossacarídeos, tais como a glicose, a xilose e a arabinose, além de potenciais inibidores de fermentação, o furfural, o hidroximetilfurfural (HMF) e o ácido acético. As condições de pré-tratamento do bagaço, nas quais foram obtidas as maiores concentrações de ART (13,88 g/L) foi utilizando 6,0 % (m/v) de HCl, em 360,00 min., a 90°C. Entretanto, sob estas condições, também foram detectadas as concentrações mais elevadas dos inibidores. A condição ótima para a hidrólise com o HCl, obtida através da análise estatística, na qual a concentração de inibidores foi minimizada e a de ART maximizada foi de 96,80ºC, 441,6 min e 7,36 % (m/v) de ácido. Para o pré-tratamento com o H3PO4, as condições ótimas foram as mesmas encontradas para o HCl, obtendo-se 4,98 g/L de ART. Os bagaços pré-tratados foram submetidos à hidrólise enzimática com a enzima Celluclast® e um extrato enzimático bruto com atividade de xilanases. A maior concentração de ART (20,98 g/L) obtida pelas duas hidrólises (ácido/enzimática) foi no bagaço pré-tratado com HCl no tempo de 360,00 min., 6,0 % (m/v) de ácido a 90°C, o qual também apresentou a maior concentração de inibidores (total de 1,23 g/L). O hidrolisado obtido com HCl que apresentou maior concentração de ART foi utilizado em ensaios de fermentação para a produção de H2 por cultura mista. / Sugarcane bagasse is a lignocellulosic residue that can be used as substrate to produce hydrogen (H2) by fermentation after hydrolysis. This study aimed to optimize the pretreatment of sugarcane bagasse with hydrochloric acid (HCl) and phosphoric acid (H3PO4), to solubilize carbohydrates and produce the minimal amount of inhibitors as well as make its structure more susceptible to enzymatic hydrolysis. In addition, we verified the possibility of using hydrolysates in the biological production of H2 by a mixed culture of microorganisms. We optimized the conditions for bagasse pretreatment with acids using an experimental designwe varied the concentration between 0.64 and 7.36% (w/v), the temperature from 63.20 to 96.80 °C, and the time from 38.40 to 441.60 min. In the hydrolysates, we determined the concentrations of total reducing sugars (TRS); monosaccharides such as glucose, xylose, and arabinose; and potential inhibitors of fermentation like furfural, hydroxymethylfurfural (HMF), and acetic acid. The conditions of bagasse pretreatment 6.0% (w/v) HCl, 360 min. and 90 °C led to the highest TRS concentrations (13.88 g L-1), but also to the highest concentrations of inhibitors. Statistical analysis revealed that the optimum conditions for the hydrolysis of sugar cane bagasse with HCl that minimized the concentration of inhibitors while maximizing the TRS concentration were: 96.80 °C, 441.6 min, and 7.36% (w/v) of acid. The optimum conditions for pre-treatment with H3PO4 were the same as those found for HCl; which yielded 4.98 g L-1 TRS. We subjected the pretreated bagasse to enzymatic hydrolysis with Celluclast® enzyme and to a crude enzyme extract with xylanase activity. For both hydrolyses (acid and enzymatic), the highest TRS concentration (20.98 g L-1) was achieved with the bagasse pretreated with HCl 6.0% (w/v) at 90 °C for 360.00 min., which also furnished the highest concentration of inhibitors (total 1.23 g L-1). The hydrolysate obtained with HCl contained higher TRS concentration was used as substrate in fermentation assays for the production of H2 by mixed culture.
8

Lignin Degradation and Dilute Acid Pretreatment for Cellulosic Alcohol Production

Cheng, Lei 30 September 2010 (has links)
No description available.
9

Ação do pré-tratamento com ácido sulfúrico diluído em híbridos de cana-de-açúcar e seus efeitos na conversão enzimática da glucana / Action of the dilute sulfuric acid pretreatment in sugarcane hybrids and their effects in the enzymatic conversion of glucan

Santos, Victor Tabosa de Oliveira 12 March 2015 (has links)
O presente trabalho avaliou o comportamento de três híbridos de cana-de-açúcar, contrastantes quanto aos teores de hemicelulose e lignina, diante do pré-tratamento com ácido sulfúrico diluído e da subsequente conversão enzimática da glucana à glicose. Os híbridos 89, 140 e 321 (H89, H140 e H321) foram submetidos à diferentes condições de pré-tratamento ácido: 150 ºC; 13 g ácido sulfúrico/100 g material; e tempos de reação que variaram entre 20 e 90 min. Os rendimentos de sólidos residuais diminuíram progressivamente em função do aumento da severidade do pré-tratamento. O H89 apresentou rendimentos nitidamente menores, comparados ao dos híbridos H140 e H321; reflexo da maior solubilização de todos os três constituintes estruturais deste híbrido. A hemicelulose foi o componente da parede celular removido com maior eficiência pelo pré-tratamento ácido. Além disso, o pré-tratamento modificou a proporção molar dos constituintes iniciais da hemicelulose (xilose, ácido acético e arabinose), resultando em estruturas residuais menos ramificadas. Paralelamente, também foi observada uma pequena remoção de lignina (entre 21% e 31%, dependendo do híbrido) e de glucana (entre 4% e 15%, dependendo do híbrido) durante o pré-tratamento. Os carboidratos detectados nos hidrolisados ácidos dos híbridos foram predominantemente monoméricos quando os tempos de reação foram maiores do que 40 min. No entanto, os híbridos H140 e H321 se diferenciaram do H89, pois apresentaram oligossacarídeos (DP>=2) nos hidrolisados obtidos em tempos de reação entre 20 e 30 min. Os rendimentos de conversão enzimática da glucana contida nos sólidos pré-tratados aumentaram substancialmente após o pré-tratamento ácido (principalmente devido à remoção de hemicelulose). No entanto, as conversões máximas de glucana em glicose não ultrapassaram 65%. A deslignificação parcial das amostras pré-tratadas com ácido (90 min), empregando soluções de clorito de sódio/ácido acético, permitiu aumentar a conversão enzimática de glucanas até valores próximos a 100%. De forma geral, o pré-tratamento ácido e a subsequente deslignificação proporcionaram maiores ganhos de conversão enzimática àqueles híbridos inicialmente mais recalcitrantes (H321 e H140). Os rendimentos de pré-tratamento (ácido diluído e clorito-ácido) e da conversão enzimática demonstraram que a maior obtenção de glicose por área plantada (Kg/hectare) ou por material processado (Kg/ton material) seria alcançada com a utilização dos híbridos H89 e H321, respectivamente. A investigação das características microestruturais das paredes celulares dos híbridos permitiu compreender como as etapas de tratamento químico afetaram a conversão enzimática da glucana. O pré-tratamento ácido diminuiu substancialmente o volume total de poros dos três híbridos, enquanto a subsequente deslignificação não retornou a porosidade aos níveis originalmente detectados nas amostras não tratadas. Por outro lado, a área superficial acessível de glucana dos substratos apresentou relação direta com os rendimentos de conversão enzimática da glucana à glicose (R2=0,92). A compilação dos dados analíticos, aliada às determinações de glucana acessível, permitiu propor um parâmetro empírico (relação do teor de glucana com a soma de hemicelulose+lignina+extraíveis), útil para predizer os níveis de conversão enzimática de glucana nas amostras estudadas. / This study evaluated the performance of three sugarcane hybrids, contrasting for lignin and hemicellulose contents, under dilute sulfuric acid pretreatment and subsequent enzymatic conversion of glucan to glucose. The hybrids 89, 140 and 321 (H89, H140, and H321) were pretreated at different reaction conditions: 150 °C; 13 g sulfuric acid/100 g material; and reaction time ranging from 20 to 90 min. Residual solid yields gradually decreased according to increasing of pretreatment severity. H89 showed the lowest yields compared to the H140 and H321 hybrids, due to the highest solubilization of all the three structural components. Hemicellulose was the major cell wall component removed by the acid pretreatment. Furthermore, acid pretreatment modified the molar ratio of the initial hemicellulose constituents (xylose, arabinose and acetic acid), resulting in less branched structures. Lignin (between 21% and 31%, depending on the hybrid) and glucan (between 4% and 15%, depending on the hybrid) removal were also observed during the pretreatment. Carbohydrates in liquid hydrolysates were predominantly detected as monomers at reaction times greater than 40 min. However, H140 and H321 hybrids differed from H89, since they presented oligosaccharides (DP>=2) in the hydrolysates obtained at short reaction time (20 and 30 min). Enzymatic conversion of glucan from pretreated solids was substantially increased after the acid pretreatment (mainly due to the hemicellulose removal). Nevertheless, maximum conversion of glucan to glucose did not exceed 65%. Partial delignification of the acid pretreated samples (90 min), employing sodium chlorite/acetic acid solutions, increased the enzymatic conversion of glucan to values near to 100%. In general, acid pretreatment and subsequent delignification provided higher gains of enzymatic conversion to the hybrids originally more recalcitrant (H321 and H140). The pretreatment (dilute acid and chlorite-acid) and enzymatic conversion yields demonstrated that to obtain higher amounts of glucose, taking into account the planted area (Kg/ha) or raw material processed (Kg/ton), would be achieved by using H89 and H321 hybrids, respectively. Analysis of the micro-structural features of the hybrids allowed understanding the effect of the chemical treatment step in the enzymatic conversion of glucan. Acid pretreatment significantly decreased the total pores volume of these hybrids, while the subsequent delignification do not returned the porosity to the original levels detected in raw samples. On the other hand, the accessible surface area of glucan showed a direct correlation with the enzymatic conversion levels of glucan to glucose (the model including several substrates presented R2=0.92). The compilation of analytical data, combined with the accessible glucan, allowed proposing an empirical parameter (ratio of the glucan content with the sum of hemicellulose+lignin+extractives), that was useful for predicting the enzymatic conversion levels of glucan for all the evaluated samples.
10

Relation morphologie/réactivité des substrats lignocellulosiques : impact du prétraitement par explosion à la vapeur / Morphology / Reactivity relationship of lignocellulosic substrates : impact of steam explosion pretreatment

Loustau Cazalet, Charlotte 10 December 2018 (has links)
Dans un contexte de transition énergétique et de lutte contre le réchauffement climatique, la production d’éthanol de seconde génération semble une voie très prometteuse afin de réduire notre dépendance aux énergies fossiles. Il existe 3 étapes clés pour la production de ce nouveau biocarburant : le prétraitement qui permet de déstructurer la matrice lignocellulosique afin de rendre la cellulose plus accessible aux enzymes, l’hydrolyse enzymatique qui a pour but de produire des sucres fermentescibles et la fermentation qui permet de transformer ces sucres en éthanol. Actuellement, le prétraitement considéré comme le plus efficace, et principalement retenu par les industriels, est le prétraitement par explosion à la vapeur. Cependant, certains aspects comme les effets physicochimiques induits par le prétraitement ainsi que leurs impacts sur les caractéristiques de la biomasse prétraitée restent encore mal compris.Schématiquement, le prétraitement par explosion vapeur peut se décomposer en deux étapes : la première se rapproche d’une cuisson acide réalisée à 150-200°C durant 5 30 min et permet principalement l’hydrolyse des hémicelluloses, alors que la seconde est une détente explosive qui permet un éclatement mécanique du substrat rendant potentiellement la cellulose plus réactive à l’hydrolyse enzymatique. Globalement les effets de ce type de prétraitement sur la biomasse lignocellulosique sont aujourd’hui bien connus mais la compréhension des différents phénomènes physico-chimiques ayant lieu en son sein reste limitée. En effet le découplage de l’étape de cuisson et de l’étape de détente est délicat car, la température du réacteur (qui impacte principalement les réactions de cuisson) est directement liée à sa pression (qui impacte principalement la détente) par la thermodynamique des phases.Ce travail de thèse se propose donc de mieux appréhender l’ensemble des phénomènes physico-chimiques ayant lieu durant le prétraitement par explosion à la vapeur en s’appuyant notamment sur une discrimination expérimentale des phénomènes chimiques (réactions de dépolymérisation) et des phénomènes physiques (détente explosive) ainsi que sur une caractérisation multi-techniques et multi-échelles de la biomasse lignocellulosique obtenue après ce type de prétraitement. L’objectif est aussi de comprendre quelles sont les principales caractéristiques de la biomasse qui expliquent les différences de réactivité observées lors de l’étape d’hydrolyse enzymatique et d’expliquer l’impact du prétraitement par explosion à la vapeur sur les propriétés physicochimiques et donc sur la réactivité. / In a context of energy transition and climate change challenge, the production of second generation ethanol seems to be a very promising way to reduce our dependence on fossil fuels. There are 3 key steps for producing this new biofuel: pretreatment to decompose the lignocellulosic biomass and to make cellulose more accessible to enzyme attacks, enzymatic hydrolysis to produce fermentable sugars and fermentation to convert these sugars into ethanol. Currently, the pretreatment considered to be the most efficient, and mainly retained for industrialization, is the steam explosion pretreatment. However, some aspects such as the physicochemical effects induced by pretreatment and their impacts on the characteristics of pretreated biomass remain misunderstood.Schematically, the steam explosion pretreatment can be separated into two stages: the first is similar to an acid cooking carried out at 150-200°C during 5-30 min and allows mainly the hydrolysis of hemicelluloses, while the second is an explosive release which allows a mechanical bursting of the substrate potentially making the cellulose more reactive to enzymatic hydrolysis. As a whole, the effects of this type of pretreatment on lignocellulosic biomass are now well known, but the understanding of the different physicochemical phenomena occurring within it remains limited. Indeed, decoupling the cooking stage and the expansion stage is complicated because the reactor temperature (which mainly impacts the cooking reactions) is directly related to its pressure (which mainly impacts the explosive release) by the phase thermodynamics.This thesis work aims to better understand all the physicochemical phenomena occurring during a steam explosion pretreatment, based in particular on experimental discrimination of chemical phenomena (depolymerization reactions) and physical phenomena (explosive release) as well as on a multi-technical and multi-scale characterization of the lignocellulosic biomass obtained after this type of pretreatment. The objective is also to understand what are the main characteristics of biomass that explain the differences in reactivity observed during the enzymatic hydrolysis step and to explain the impact of the steam explosion pretreatment on the physicochemical properties and therefore the reactivity.

Page generated in 0.1076 seconds