Spelling suggestions: "subject:"acidic media"" "subject:"wacidic media""
1 |
Comparative in vitro study of selected physical properties of activa, cention n and vitremerMohammed Khair, Ro'aa Mohammed Jafar Mohammed January 2021 (has links)
Magister Theologiae - MTh / This study aimed to determine the association between dimensional change and surface roughness (Ra) of Vitremer, Activa and Cention N after immersing them into two different media: acidic and artificial saliva media for the period of a year. Measurements were made at 10 time intervals during the observation period.
|
2 |
Comparative in vitro study of selected physical properties of Activa, Cention N and VitremerKhair, Ro’aa Mohammed Jafar Mohammed Mohammed January 2021 (has links)
Magister Chirurgiae Dentium (MChD) / Background: This study aimed to determine the association between dimensional change and surface roughness (Ra) of Vitremer, Activa and Cention N after immersing them into two different media: acidic and artificial saliva media for the period of a year. Measurements were made at 10 time intervals during the observation period. Methodology: This was a quantitative and qualitative study. For the quantitative part, a total of 60 specimens were tested, 20 specimens for each material. The 20 specimens were further divided into 10 specimens. Ten were immersed in acidic media and the rest in saliva media. A measurement of the weight, height, and Ra was carried out as follows: day 0, day 1, day 2, day 7, day 21, day 28, day 60, day 90, day 180 and day 365. Scanning electron microscopy (SEM) was used to examine the surface of each material qualitatively pre and post immersion in the two media. For fluoride measurements, an additional five samples from each material were left suspended in the de-ionized water by the use of dental floss. The materials were moved to new specimen jars after the completion of day 1, 2, 3, 4, 5, 6, 7, 14, 21 and 28. All the specimen jars had been kept for the fluoride measurements. Results: Non-parametric tests were used to analyze the data. Linear regression analysis was used to measure the association between weight, height or surface roughness (Ra) and immersion time for a year. The result of this test showed that Vitremer had a significant association between the weight (p = 0.000), height (p = 0.007) and Ra (p = 0.001) when it was immersed in acidic media. On the other hand, when Vitremer was immersed in saliva media, only the weight variable showed a significant association (p = 0.002). For Cention N, significant association was found for only Ra when immersed in acidic media (p = 0.000). Finally, for Activa, all the studied associations; the weight, height and Ra in both media were found to be insignificant. For saliva media, there was a significant weight change between the three materials during all 10 periods of time (p = 0.000). In the first six months, Cention N demonstrated a significant increase in weight changes followed by Vitremer, then Activa. Yet, after a year, the difference between Cention N and Vitremer became insignificant and Activa showed the least weight changes. There was not a significant difference between the materials in terms of height and Ra measurements. The fluoride experiment was not successful due to technical issues during pH measurements of the collected solutions. For comparison of the studied parameters between the three materials, the Kruskal-Wallis test was used. In acidic media, there was a significant difference between the materials in term of weight change in 10 periods of time (p = 0.000). In particular, after a two month period, Cention N had the highest weight, followed by Vitremer and then by Activa. The difference between Vitremer and Activa became insignificant throughout the rest of the experimental time frame. All the height measurements between the three materials were found to be insignificant except for day 365 (p = 0.048), where both Activa and Cention N were found to be significantly higher than Vitremer. For the Ra comparison, in the first two weeks, particularly day 1, 7 and 14, Cention N had significantly the lowest Ra among the other materials. As the three materials aged in the acidic media (day 180), Vitremer had significantly the highest Ra values. Cention N showed higher Ra values than Activa; nonetheless this difference was not significant. The SEM images showed loss of some particles in all post-experimental images of the materials in acidic media. Vitremer showed the widest cracks with the loss of fillers. In saliva media, there was also loss of particles but to a lesser extent than in acidic media. Yet, the post-experimental image of Activa in saliva resembled the pre-experimental one. Conclusion: Within the limitations of the study, the best material to resist Ra from prolonged acidic attack was Activa followed by Cention N and then Vitremer. Except for Vitremer, no significant changes in the Ra of the other materials were detected when the three materials were immersed in saliva media in the long term. In acidic media Vitremer tended to lose weight and height faster than Cention N and Activa over a year. Cention N is the best material to resist dimensional change. However, in artificial saliva Vitremer gained water rapidly. Activa did not absorb a lot of water and did not reject a lot of water; Activa demonstrated good dimensional stability and this property may be beneficial when compared to the other two materials tested. The clinical significance of the study: All the materials studied were subjected to dimensional and Ra changes following long-term exposure to acidic substances, but the newer materials (Cention N and Activa) seemed to be more dimensionally stable and resistant to Ra changes than the older, well-known material (Vitremer). This may influence a clinician’s choice of restorative material for use in pediatric dentistry.
|
3 |
Relations Structure/Composition/Propriétés de revêtements électrodéposés de nickel de taille de grain nanométrique / Relations between structure, composition and properties of electrodeposited nickel coatings with nanometric grain sizeGodon, Aurélie 03 December 2010 (has links)
Les travaux présentés dans ce mémoire ont pour but de mieux comprendre les relations entre la microstructure des revêtements métalliques nanocristallisés et leurs propriétés électrochimiques et mécaniques. Les dépôts de nickel sont élaborés par électrodéposition en courant continu et en courant pulsé dans un bain au sulfamate de nickel avec des sels de haute pureté, sans additif afin de minimiser les risques de contamination. Une caractérisation précise des états métallurgiques développés est réalisée au moyen de diverses techniques (MEB, MET, DRX, AFM, EBSD, SIMS, GDOES) afin d’évaluer la microstructure à différentes échelles (taille de grain, texture, contraintes internes, type de joints de grains) et d’identifier les contaminants. Trois types de texture ont été développés, associés à différentes tailles d’hétérogénéités structurales allant du micromètre à quelques dizaines de nanomètres. Une loi dite “d’échelle” a été mise en évidence, permettant de corréler les résultats obtenus par les diverses méthodes d’analyse. L’affinement de la taille de grain se traduit par une augmentation de la contamination dans les dépôts et entraîne une augmentation de la microdureté. La loi de Hall-Petch est influencée par l’orientation cristallographique ce qui a pu être relié à la nature des joints de grains et à la contamination des revêtements. Une étude préliminaire de la réactivité électrochimique en milieu acide a montré le rôle marqué des effets de surface (contamination et rugosité de surface). La réalisation d’un polissage électrolytique sur les revêtements a permis d’étudier l’influence des paramètres métallurgiques (taille de grain, contamination, nature des joints de grains) sur la réactivité. Les courbes de polarisation dans le domaine anodique et dans le domaine cathodique ont été simulées à l’aide de modèles cinétiques. Les résultats obtenus suggèrent que les joints de grains ont un effet qui peut être activant ou désactivant suivant l’étape considérée, ces effets pouvant être atténués par la présence d’impuretés. Les modifications de propriétés mécaniques et électrochimiques des revêtements ne peuvent être attribuées à une diminution de la taille de grain seule. / The purpose of the work presented in this manuscript is to better understand the relations between the microstructure of nanocrystallized metal coatings and their electrochemical and mechanical properties. Nickel deposits are elaborated by electrodeposition using direct current and pulse current in a nickel sulphamate bath with salts of high purity and without additive, in order to minimize the risks of contamination. A precise characterization of the developed metallurgical states is carried out by means of various techniques (SEM, TEM, XRD, AFM, EBSD, SIMS, GDOES) in order to evaluate the microstructure on various scales (grain sizes, textures, internal stresses, type of grain boundaries) and to identify contaminants. Three types of texture were developed associated with various sizes of structural heterogeneities from about one micrometer to a few dozens of nanometers. A “scale” law, allowing to correlating the results obtained by the various methods of analysis was shown. The grain size refinement results in an increase of contamination in the deposits and involves an increase of microhardness. The Hall-Petch law is influenced by the crystallographic orientation which could be connected to the nature of grain boundaries and the contamination of the coatings. A preliminary study of the electrochemical reactivity in acidic media showed the marked role of the surface effects (contamination and roughness of surface). Electrolytic polishing of the coatings highlights the influence of the metallurgical parameters (grain size, contamination, nature of grains boundaries) on the reactivity. The polarization curves in anodic domain and cathodic domains were simulated using kinetic models. The obtained results suggest that grain boundaries can either activate or deactivate the electrochemical kinetics according to the considered stage, these effects being able to be constrained by the presence of impurities. The modifications of mechanical and electrochemical properties of the coatings cannot be ascribed to a reduction of the grain size alone.
|
4 |
Preparation and characterization of aryldiazonium electroreduction-derived and metallophthalocyanine-modified carbon surfaces : application to nitrate electrochemical reduction in acidic aqueous media / Préparation et caractérisation des électrodes de carbone vitreuses modifiées par la réduction électrochimique des sels de diazonium et par abrasion physique des phtalocyanines : application à la réduction électrochimique des nitrates dans le milieu aqueux acideHussain, Riaz 15 November 2012 (has links)
Ce travail de thèse concerne la préparation et caractérisation des électrodes de carbone vitreuses (GC) modifiées par les films de groupements aryl (substitués) ou par phtalocyanines des métaux (MPc) et l'évaluation de leurs activités catalytiques envers la réduction électrochimique des nitrates dans les milieux aqueux acides. Les techniques adoptées pour la modification de surface du substrat (le GC) consistent à la réduction électrochimique des sels de diazonium ou à l'abrasion physique de la surface contre la poudre des MPc. En faisant intervenir un mécanisme complexe, y compris les phénomènes d'adsorption du réactif et du produit sur la surface, l’électroréduction de sels de diazonium entraîne au greffage des groupements aryls sur la surface. Les analyses voltamétriques détaillées ont rendu possible de conclure, décisivement pour la première fois, que la réduction commence à se faire sur la surface entière et, selon la concentration du diazonium et/ou l'efficacité du greffage, peut continuer à se faire à traverse les ouvertures microscopiques générés parmi les groupements aryl greffés sur la surface durant l'étape précédente de réduction (...) / This thesis work concerns about the preparation, characterization and catalytic activities evaluation of (substituted) aryl and metallophthalocyanines films-modified glassy carbon (GC) electrodes towards nitrate electrochemical reduction in acidic aqueous media. The surface modification techniques adopted consisted of the electroreduction of 4-substituted aryl diazonium salts and the metallophthalocyanine (MPc) powder abrasive adsorption. Through a complex mechanism involving the reactants and products adsorptions on the substrate surface, the electroreduction of aryl diazonium salts leads to the covalent attachment of mono as well as multilayers of aryl groups on the substrate surface. Detailed voltammetric investigations enabled to conclude, decisively for the first time, that the diazonium cation reduction begins to take place on the bulk (whole) surface and, depending upon the concentration and/or the products grafting efficiency, may continue to take place across the microscopic pinholes formed among the aryl groups grafted on the surface during the previous reduction step, thereby explaining the origin of the two reduction peaks in the voltammograms on GC surface. Electrochemical characterization of 4-nitrophenyl(NP)-modified surfaces in various types of aqueous media shed light over a number of mechanistic aspects of the process. Some new electrochemical evidences of the complications of surface coverage determination of redox centers from their electrochemical responses and of the role of aqueous electrolyte species transport on the responses have been presented. Some new phenomena or observations such as identification of the regions of votammograms corresponding to aminophenyl and hydroxyaminophenyl formation of the surface bound NP groups reduction, identification of the method of surface bound NP groups surface coverage estimation from the total width at half wave maximum (or electron transfer coefficient) of the responses, identification of the mechanistic aspects governing the differences of voltammetric behaviors of surface bound NP layers and the solution phase nitrobenzene, electrochemical (and XPS) evidences of the presence of azo type functionalities in the aryl films prepared from aryldiazonium electroreduction were also noticed. Barrier characters of the aryldiazonium electroreduction-derived N,N-dimethylaminophenyl-, nitrophenyl- and aminophenyl-modified surfaces towards ferricyanide, hexaammineruthenium and proton electroreductions in aqueous media indicate to the existence of electrostatic interactions among the surface bound and the solution phase ionic species. However, upon negative potential applications (such as those of water or nitrate reductions) surface attached films are partly or completely lost from the surface, as evidenced by the analytical scale measurements as well as from potentiostatic electrolysis of nitrate reduction in acidic aqueous media. Concerning the MPc-modified GC surfaces, the analytical scale measurements showed that among the phthalocyanines of copper, Iron and Nickel, the one of Cu is an optimizing material for the nitrate electrochemical reduction in, not previously reported, acidic aqueous media. The catalytic activity of MPc powders towards nitrate reduction in these media, which varies in the order CuPc > FePc > NiPc > GC appears to be related to the mental center and not with the phthalocyanine ring
|
Page generated in 0.0511 seconds