• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 6
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 24
  • 17
  • 16
  • 11
  • 10
  • 9
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EFFECTS OF EPIDERMAL GROWTH FACTOR AND DIET ON CULTURED PANCREATIC ACINAR CELLS.

Demarest, Alison Sue. January 1984 (has links)
No description available.
2

Effects of diet on amylase content and synthesis in cultured rat acinar cells

Justice, Jill Diane, 1963- January 1989 (has links)
To study adaptation of pancreatic amylase to diet, an affinity adsorbent, alpha-GHI-AH-Sepharose 4B, was used to determine amylase synthesis in cultured pancreatic acinar cells. This adsorbent exhibited a consistent binding capacity and was specific for amylase. Acinar cells from rats fed high fat (HF) or carbohydrate (HC) diets for 7 d were cultured 1-48 h in serum-free medium. Amylase activity remained significantly higher in HC cells than in HF cells through 24 h in culture, despite its decrease with time in culture. The relative synthesis of amylase (3H-phe amylase/3H-phe total protein x 100) was significantly higher in HC than in HF cells at isolation and remained higher during culture. These results demonstrate that this affinity adsorbent can be used to determine amylase synthesis and suggest that the effect of diet on amylase activity and relative synthesis persists in cultured pancreatic acinar cells.
3

Cell therapy for Type 1 diabetes

Marques de Lima, Maria João January 2013 (has links)
Type 1 diabetes (T1D) is a chronic disease, characterised by the destruction of pancreatic beta cells, which results in lack of insulin expression. Most current therapies rely on the exogenous administration of recombinant insulin. Islet transplantation has been shown to be a more effective alternative treatment, but it is also limited by the lack of available islets for transplantation. The recently awarded work of Yamanaka and colleagues has shown that fully differentiated cells can be reprogrammed towards their pluripotent, undifferentiated state, through overexpression of a simple combination of four key transcritption factors (TFs). The studies presented in this thesis sought to investigate whether a combination of a small group of key pancreatic TFs would be able to drive both mouse embryonic stem cells (mES) and fully differentiated rat and human acinar cells of the pancreas towards insulin-producing cells. When administered in a timely manner to mES cells, the pancreatic TFs Pdx1 and MafA were able to induce the formation of cells that synthesised insulin de novo. Further studies aimed at investigating if a small number of TFs would be able to reprogramme the exocrine pancreatic cells towards insulin expressing cells, since, unlike endocrine cells, exocrine cells are highly abundant in the pancreas. Studies performed in both a rat exocrine cell line (AR42J-B13) and in human exocrine cells demonstrated that the combination of the TFs Pdx1, MafA, Ngn3 and Pax4 was able to generate glucose responsive β-like cells in both models. In addition, Pax4 was found to be determinant for the functionality of the generated β-cells. The functionality of these cells was further demonstrated by their ability to prevent the onset of hyperglycemia upon transplantation into a diabetic mouse model. The work presented in this thesis has shown that cultured exocrine cells may be a promising alternative for generating a replenishable supply of β-cells for transplantation.
4

Temporal and spatial Ca'2'+ signals in pancreatic acinar cells

Lawrie, Alison M. January 1994 (has links)
No description available.
5

Attempts to Elucidate the Role of SNAP23 in Regulated and Pathological Exocytosis in Pancreatic Acinar Cells Using an Inducible SNAP23 Knockout Mouse

Fernandez, Nestor Alejandro 31 December 2010 (has links)
One contentious issue regarding pancreatic acinar exocytosis concerns which SNAP25 isoform (SNAP23/29/47) mediates the various fusion events in this cell type. Based on dominant-negative over-expression studies, SNAP23 was hypothesized to be the putative isoform mediating apical exocytosis, basolateral exocytosis, and ZG-ZG fusion. Unfortunately, using a SNAP23 KD mouse model, 80% SNAP23 KD was insufficient to manifest any secretion phenotype. A novel syncollin-pHluorin exocytosis imaging technique initially meant to assess which fusion events are perturbed by SNAP23 KD was successfully developed and displayed improvements over previous imaging techniques. The syncollin-pHluorin imaging enabled visualization of apical and basolateral exocytosis as well as sequential ZG-ZG fusions. Combined with spinning disk microscopy, this assay allows 3D live exocytosis imaging with high temporal and spatial resolution. This novel imaging assay will be useful in visualizing apical, basolateral, sequential, and lateral fusion events for future acinar studies.
6

Attempts to Elucidate the Role of SNAP23 in Regulated and Pathological Exocytosis in Pancreatic Acinar Cells Using an Inducible SNAP23 Knockout Mouse

Fernandez, Nestor Alejandro 31 December 2010 (has links)
One contentious issue regarding pancreatic acinar exocytosis concerns which SNAP25 isoform (SNAP23/29/47) mediates the various fusion events in this cell type. Based on dominant-negative over-expression studies, SNAP23 was hypothesized to be the putative isoform mediating apical exocytosis, basolateral exocytosis, and ZG-ZG fusion. Unfortunately, using a SNAP23 KD mouse model, 80% SNAP23 KD was insufficient to manifest any secretion phenotype. A novel syncollin-pHluorin exocytosis imaging technique initially meant to assess which fusion events are perturbed by SNAP23 KD was successfully developed and displayed improvements over previous imaging techniques. The syncollin-pHluorin imaging enabled visualization of apical and basolateral exocytosis as well as sequential ZG-ZG fusions. Combined with spinning disk microscopy, this assay allows 3D live exocytosis imaging with high temporal and spatial resolution. This novel imaging assay will be useful in visualizing apical, basolateral, sequential, and lateral fusion events for future acinar studies.
7

Transmission genetics of pancreatic acinar atrophy in the German Shepherd Dog and development of microsatellite DNA-based tools for canine forensics and linkage analysis

Clark, Leigh Anne 30 September 2004 (has links)
The domestic dog, Canis lupus familiaris, has emerged as a model system for the study of human hereditary diseases. Of the approximately 450 hereditary diseases described in the dog, half have clinical presentations that are quite similar to specific human diseases. Understanding the genetic bases of canine hereditary diseases will not only complement comparative genetics studies but also facilitate selective breeding practices to reduce incidences in the dog. Whole genome screens have great potential to identify the marker(s) that segregate with canine hereditary diseases for which no reasonable candidate genes exist. The Minimal Screening Set-1 (MSS-1) was the first set of microsatellite markers described for linkage analysis in the dog and was, until recently, the best tool for genome screens. The MSS-2 is the most recently described screening set and offers increased density and more polymorphic markers. The first objective of this work was to develop tools to streamline genomic analyses in the study of canine hereditary diseases. This was achieved through the development of 1) multiplexing strategies for the MSS-1, 2) a multiplex of microsatellite markers for use in canine forensics and parentage assays and 3) chromosome-specific multiplex panels for the MSS-2. Multiplexing is the simultaneous amplification and analysis of markers and significantly reduces the expense and time required to collect genotype information. Pancreatic acinar atrophy (PAA) is a disease characterized by the degeneration of acinar cells of the exocrine pancreas and is the most important cause of exocrine pancreatic insufficiency (EPI) in the German Shepherd Dog (GSD). Although the prognosis for dogs having EPI is typically good with treatment, many dogs are euthanized because the owners are unable to afford the expensive enzyme supplements. The second objective of this work was to determine the mode of transmission of EPI in the GSD and conduct a whole genome screen for linkage. Two extended families of GSDs having PAA were assembled and used to determine the pattern of transmission. The results of this indicate that PAA is an autosomal recessive disease. The multiplexed MSS-1 was used to conduct an initial whole genome screen, although no markers were suggestive of linkage.
8

The Role of Munc18 Proteins in Physiologic and Pathologic Exocytoses in the Pancreatic Acinar Cell

Lam, Patrick Pak Ling 18 February 2010 (has links)
Distinct membrane fusion events in the polarized pancreatic acinar cell involve highly specific interactions between distinct sets of SNARE proteins forming exocytotic complexes, whose assembly is modulated by distinct Munc18 proteins. The Munc18 isoform responsible for these exocytotic events in the acinar cell is unknown. Here, I postulate Munc18b to regulate apical exocytosis in the acinar cell. Current dogma for the pathogenesis of acute pancreatitis, including alcoholic pancreatitis, is mis-targeting and deregulated fusion of zymogen granules with lysosomal bodies in the acinar cells. This derangement results in premature activation of proteolytic zymogens and autophagic digestion of cellular contents. I have hypothesized an alternate mechanism, which is pathologic exocytosis occurring at the basolateral plasma membrane, and further propose Munc18c to mediate this process in alcoholic pancreatitis. The aims of this thesis are to demonstrate the roles of Munc18b and Munc18c in regulated apical exocytosis and pathologic basolateral exocytosis underling alcoholic pancreatitis, respectively. In Chapter Three, using both real-time and static imaging techniques and biochemical tools, I demonstrated that Munc18c is dissociated from the acinar basal plasma membrane (BPM) when stimulated with postprandial CCK8 preceding preincubation of acini with postprandial 20-50mM ethanol concentrations. This activated Syntaxin (Syn)-4 and SNAP-23 on the BPM to complex with VAMP proteins on the granule to form the exocytotic SNARE complex that triggered basolateral exocytosis. This molecular mechanism of pathologic basolateral exocytosis was recapitulated in an Ethanol-diet rat model of pancreatitis. In Chapter Four, I determined Munc18b to be in the apical pole of the acinar cell to appropriately bind cognate Syn-2 and Syn-3 in the apical PM and ZGs. Here, I examined the structure-function of Munc18b on amylase secretion by employing Munc18b mutants with distinct affinities to Syn-2 and Syn-3. In Chapter Five, I discovered a novel EF-hand Ca2+-binding protein called Cab45b, which binds Munc18b to regulate its membrane targeting and interactions with Syntaxins in the acinar cell in a manner that influenced Ca2+-induced amylase release. Taken together, these studies clarify our understanding of the role of Munc18 proteins involved in regulated and pathologic membrane fusion events underlying physiologic digestive enzyme secretion and clinical alcoholic pancreatitis.
9

The Role of Munc18 Proteins in Physiologic and Pathologic Exocytoses in the Pancreatic Acinar Cell

Lam, Patrick Pak Ling 18 February 2010 (has links)
Distinct membrane fusion events in the polarized pancreatic acinar cell involve highly specific interactions between distinct sets of SNARE proteins forming exocytotic complexes, whose assembly is modulated by distinct Munc18 proteins. The Munc18 isoform responsible for these exocytotic events in the acinar cell is unknown. Here, I postulate Munc18b to regulate apical exocytosis in the acinar cell. Current dogma for the pathogenesis of acute pancreatitis, including alcoholic pancreatitis, is mis-targeting and deregulated fusion of zymogen granules with lysosomal bodies in the acinar cells. This derangement results in premature activation of proteolytic zymogens and autophagic digestion of cellular contents. I have hypothesized an alternate mechanism, which is pathologic exocytosis occurring at the basolateral plasma membrane, and further propose Munc18c to mediate this process in alcoholic pancreatitis. The aims of this thesis are to demonstrate the roles of Munc18b and Munc18c in regulated apical exocytosis and pathologic basolateral exocytosis underling alcoholic pancreatitis, respectively. In Chapter Three, using both real-time and static imaging techniques and biochemical tools, I demonstrated that Munc18c is dissociated from the acinar basal plasma membrane (BPM) when stimulated with postprandial CCK8 preceding preincubation of acini with postprandial 20-50mM ethanol concentrations. This activated Syntaxin (Syn)-4 and SNAP-23 on the BPM to complex with VAMP proteins on the granule to form the exocytotic SNARE complex that triggered basolateral exocytosis. This molecular mechanism of pathologic basolateral exocytosis was recapitulated in an Ethanol-diet rat model of pancreatitis. In Chapter Four, I determined Munc18b to be in the apical pole of the acinar cell to appropriately bind cognate Syn-2 and Syn-3 in the apical PM and ZGs. Here, I examined the structure-function of Munc18b on amylase secretion by employing Munc18b mutants with distinct affinities to Syn-2 and Syn-3. In Chapter Five, I discovered a novel EF-hand Ca2+-binding protein called Cab45b, which binds Munc18b to regulate its membrane targeting and interactions with Syntaxins in the acinar cell in a manner that influenced Ca2+-induced amylase release. Taken together, these studies clarify our understanding of the role of Munc18 proteins involved in regulated and pathologic membrane fusion events underlying physiologic digestive enzyme secretion and clinical alcoholic pancreatitis.
10

Transmission genetics of pancreatic acinar atrophy in the German Shepherd Dog and development of microsatellite DNA-based tools for canine forensics and linkage analysis

Clark, Leigh Anne 30 September 2004 (has links)
The domestic dog, Canis lupus familiaris, has emerged as a model system for the study of human hereditary diseases. Of the approximately 450 hereditary diseases described in the dog, half have clinical presentations that are quite similar to specific human diseases. Understanding the genetic bases of canine hereditary diseases will not only complement comparative genetics studies but also facilitate selective breeding practices to reduce incidences in the dog. Whole genome screens have great potential to identify the marker(s) that segregate with canine hereditary diseases for which no reasonable candidate genes exist. The Minimal Screening Set-1 (MSS-1) was the first set of microsatellite markers described for linkage analysis in the dog and was, until recently, the best tool for genome screens. The MSS-2 is the most recently described screening set and offers increased density and more polymorphic markers. The first objective of this work was to develop tools to streamline genomic analyses in the study of canine hereditary diseases. This was achieved through the development of 1) multiplexing strategies for the MSS-1, 2) a multiplex of microsatellite markers for use in canine forensics and parentage assays and 3) chromosome-specific multiplex panels for the MSS-2. Multiplexing is the simultaneous amplification and analysis of markers and significantly reduces the expense and time required to collect genotype information. Pancreatic acinar atrophy (PAA) is a disease characterized by the degeneration of acinar cells of the exocrine pancreas and is the most important cause of exocrine pancreatic insufficiency (EPI) in the German Shepherd Dog (GSD). Although the prognosis for dogs having EPI is typically good with treatment, many dogs are euthanized because the owners are unable to afford the expensive enzyme supplements. The second objective of this work was to determine the mode of transmission of EPI in the GSD and conduct a whole genome screen for linkage. Two extended families of GSDs having PAA were assembled and used to determine the pattern of transmission. The results of this indicate that PAA is an autosomal recessive disease. The multiplexed MSS-1 was used to conduct an initial whole genome screen, although no markers were suggestive of linkage.

Page generated in 0.0325 seconds