Spelling suggestions: "subject:"acoustic radiation pressure"" "subject:"coustic radiation pressure""
31 |
Tailored Force Fields for Flexible FabricationWanis, Sameh Sadarous 11 April 2006 (has links)
The concept of tailored force fields is seen as an enabler for the construction of large scale space structures. Manufacturing would take place in space using in-situ resources thereby eliminating the size and weight restriction commonly placed on space vehicles and structures. This thesis serves as the first investigation of opening the way to a generalized fabrication technology by means of force fields. Such a technology would be
non-contact, flexible, and automated. The idea is based on the principle that waves carry momentum and energy with no mass transport. Scattering and gradient forces are generated from various types of wave motion. Starting from experiments on shaping walls using acoustic force fields, this thesis extends the technology to electromagnetic fields. The interaction physics of electromagnetic waves with dielectric material is studied. Electromagnetic forces on neutral dielectric material are shown to be analogous to acoustic forces on sound-scattering material. By analogy to the acoustic experiments,
force fields obtained by optical tweezers are extended to longer wavelength electromagnetic waves while remaining in the Rayleigh scattering regime. Curing of the surface formed takes place by use of a higher frequency beam that scans the surface and melts a subsurface layer enabling a sintering effect to take place between the particles. The resulting capability is explored at its extremes in the context of building massive structures in Space. A unification of these areas is sought through a generalization of the various theories provided in the literature applicable for each field.
|
32 |
Effet d'ultrasons de puissance sur les matériaux mous : vers des matériaux "acousto-rhéologiques" / Effect of high intensity ultrasound on soft materials : towards « rheo-acoustical » materialsLidon, Pierre 08 July 2016 (has links)
Les méthodes d'imagerie et de vélocimétrie ultrasonores ont prouvé leur efficacité pour étudier des matériaux divers. À haute intensité, il est connu que les ultrasons exercent des forces stationnaires dans les fluides newtoniens, par le biais d'effets non linéaires comme la pression de radiation acoustique. Néanmoins, ces effets n'ont encore jamais été exploités d'un point de vue fondamental dans le contexte de la physique des matériaux mous. L'objet de cette thèse est d'exploiter l'interaction d'ultrasons de puissance avec des matériaux bloqués afin de sonder activement, voire d'influencer leurs propriétés mécaniques. Nous proposons tout d'abord une méthode de microrhéologie active : la « mésorhéologie acoustique ». En analysant le mouvement d'un intrus sous l'effet de la pression de radiation acoustique, nous caractérisons localement la rhéologie du matériau étudié. Nous mettons cette technique en œuvre avec un fluide à seuil simple : un microgel de carbopol. Nous exploitons les résultats obtenus à la lumière d'une caractérisation rhéologique poussée du comportement de ce matériau en dessous de son seuil d'écoulement et proposons diverses pistes d'amélioration du dispositif.Ensuite, nous décrivons la mise en écoulement d'un empilement granulaire immergé par des ultrasons intenses focalisés et comparons les observations aux résultats de simulations de dynamique moléculaire. La transition de fluidification observée car l'injection d'énergie y est discontinue. Elle est intermittente et hystérétique, propriétés reproduites par des simulations numériques et dont un modèle phénoménologique simple permet de rendre compte.Enfin, en remplaçant le plan d'un rhéomètre classique par un transducteur ultrasonore, nous mesurons l'effet de vibrations à haute fréquence sur les propriétés mécaniques d'un gel colloïdal fragile de noir de carbone. Nous observons un effet significatif et potentiellement irréversible des ultrasons sur le module élastique et sur la mise en écoulement de ce système. Les vibrations semblent favoriser le glissement du gel aux parois mais il semble toutefois qu'elles induisent également des changements en volume dans l'échantillon. / Ultrasonic imaging and velocimetry has been proved to be very efficient methods to study various materials. At high intensity, ultrasonic waves are known to exert steady forces in newtonian fluid through nonlinear effects like the acoustic radiation pressure. However those effects have never been used in fundamental studies of the physics of soft materials. This thesis aims at exploiting the interaction between high intensity ultrasound and soft jammed materials to probe actively and even modify their mechanical properties.We first introduce an alternative technique for active microrheology we called « acoustic mesorheology ». By analyzing the motion of an intruder under the acoustic radiation pressure we characterize locally the rheology of the system under study. We test this technique on a simple yield stress fluid, namely a carbopol microgel. We compare the results with those obtained by standard rheology measurements of the behaviour of this gel under its yield stress.Then we describe the fluidization of an immersed granular packing by high intensity focused ultrasound. We compare our observations with the results of molecular dynamics simulations. The obtained fluidization is original as the injection of energy is discontinuous in time. It is hysteretic and intermittent and those properties are well captures by both simulations and a phenomenological model.Finally, we replace the plane of a standard cone-plate rheometer by an ultrasonic transducer. This allows us to characterize the effect of high frequency vibrations on the rheology of a fragile carbon black gel. We observe a significant and eventually irreversible effect of ultrasound on the elastic modulus and on the yielding of the system. Vibrations are shown to favor wall slip but seem to induce changes in the volume of the sample though.
|
Page generated in 0.1448 seconds