• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Les rôles distincts des isoformes de myosine II non-musculaire dans des processus cellulaires impliquant le cytosquelette d'actine.

Solinet, Sara 12 1900 (has links)
Le complexe actomyosine, formé de l’association de la myosine II avec les filaments d’actine, stabilise le cytosquelette d’actine et génère la contraction cellulaire nécessaire à plusieurs processus comme la motilité et l’apoptose dans les cellules non-musculaires. La myosine II est un hexamère formé d’une paire de chaînes lourdes (MHCs) et de deux paires de chaînes légères MLC20 et MLC17. La régulation de l’activité de la myosine II, c'est-à-dire son interaction avec les filaments d’actine, est directement liée à l’état de phosphorylation des MLC20, mais il reste beaucoup à découvrir sur l’implication des MHCs. Il existe trois isoformes de MHCs de myosine II, MHCIIA, MHCIIB et MHCIIC qui possèdent des fonctions à la fois communes et distinctes. Notre but est de mettre en évidence les différences de fonction entre les isoformes de myosine II, au niveau structurale, dans la stabilisation du cytosquelette d’actine, et au niveau de leur activité contractile, dans la génération des forces de tension. Nous nous sommes intéressés au rôle des isoformes des MHCs dans l’activité du complexe actomyosine qui est sollicité durant le processus de contraction cellulaire de l’apoptose. Dans quatre lignées cellulaires différentes, le traitement conjoint au TNFα et à la cycloheximide causait la contraction et le rétrécissement des cellules suivi de leur détachement du support de culture. Par Western blot, nous avons confirmé que la phosphorylation des MLC20 est augmentée suite au clivage de ROCK1 par la caspase-3, permettant ainsi l’interaction entre la myosine II et les filaments d’actine et par conséquent, la contraction des cellules apoptotiques. Cette contraction est bloquée par l’inhibition des caspases et de ROCK1. MHCIIA est dégradée suite à l’activation de la caspase-3 alors que MHCIIB n’est pas affectée. En utilisant une lignée cellulaire déficiente en MHCIIB, ou MHCIIB (-/-), nous avons observé que la contraction et le détachement cellulaires durant l’induction de l’apoptose se produisaient moins rapidement que dans la lignée de type sauvage (Wt) ce qui suggère que l’isoforme B est impliquée dans la contraction des cellules apoptotiques. Parallèlement, la kinase atypique PKCζ, qui phosphoryle MHCIIB et non MHCIIA, est activée durant l’apoptose. PKCζ joue un rôle important puisque son inhibition bloque la contraction des cellules apoptotiques. Par la suite, nous nous sommes intéressés à la modulation de la morphologie cellulaire par la myosine II. Les fibroblastes MHCIIB (-/-), présentent un large lamellipode dont la formation semble dû uniquement à l’absence de l’isoforme MHCIIB, alors que les fibroblastes Wt ont une morphologie cellulaire étoilée. La formation du lamellipode dans les fibroblastes MHCIIB (-/-) est caractérisée par l’association de la cortactine avec la membrane plasmique. L’observation en microscopie confocale nous indique que MHCIIA interagit avec la cortactine dans les fibroblastes Wt mais très peu dans les fibroblastes MHCIIB (-/-). Le bFGF active la voie des MAP kinases dans les fibroblastes Wt et MHCIIB (-/-) et induit des extensions cellulaires aberrantes dans les fibroblastes MHCIIB (-/-). Nos résultats montrent que l’implication de l’isoforme B de la myosine II dans la modulation de la morphologie cellulaire. L’ensemble de nos résultats participe à distinguer la fonction structurale et contractile de chacune des isoformes de myosine II dans la physiologie cellulaire. / We are interested in studying the modulation of the actomyosin complex which is involved in different cellular processes such as cell locomotion and apoptosis. The actomyosin complex is formed by the association of actin filaments and myosin II. The non-muscle myosin II is a hexamer formed by one pair of heavy chains (MHCs) and two pairs of light chain (MLC20 and MLC17). The actomyosin activity is dependent on MLC20 and MHCs phosphorylation. There are three isoforms of MHCs (MHCIIA, MHCIIB and MHCIIC) which have common but also distinctive roles in several cellular processes. Our aim is to clarify the structural and contractile functions of each isoforme of myosin II in different cellular processes, in particular, cell contraction and cell morphology. First, we studied the implication of myosin II isoforms in cell shrinkage and detachment during apoptosis which are both dependent on actomyosin contractility. We treated four different cell lines with TNFα in combination with cycloheximide (CHX) to trigger apoptosis. We confirmed that TNFα induced caspase-3 activation, ROCK1 cleavage and increased MLC20 phosphorylation. We showed that TNFα/CHX induced the caspase-dependent MHCIIA degradation, whereas MHCIIB levels and association with the actin cytoskeleton remained virtually unchanged. Cell shrinkage and detachment were blocked by caspase and ROCK1 inhibitors. Using the MHCIIB (-/-) cell line, we observed that the absence of MHCIIB did not affect cell death rate. However, MHCIIB (-/-) fibroblasts showed more resistance to TNFα-induced actin disassembly, cell shrinkage and detachment than wild type (Wt) fibroblasts, indicating the participation of MHCIIB in these events. PKCζ, which only phosphorylates MHCIIB, was cleaved during apoptosis, co-immunoprecipitated preferentially with MHCIIB and, interestedly, PKCζ inhibition blocked TNFα-induced shrinkage and detachment. Our results demonstrate that MHCIIB, together with MLC phosphorylation and actin, constitute the actomyosin cytoskeleton that mediates contractility during apoptosis. Second, we studied the involvement of myosin II isoforms in cell shape modulation. Fibroblasts MHCIIB (-/-) spontaneously formed lamellipodia whereas Wt fibroblasts presented a stellate shape. Cortactin was associated with the leading edge of lamellipodia in MHCIIB (-/-) fibroblasts, but it localised diffusely in the cytoplasm or at the end of fine cellular projections in Wt fibroblasts. The levels of cortactin and cortactin phosphorylated in Tyr421 associated with membrane in MHCIIB (-/-) fibroblasts were higher than in Wt fibroblasts. Confocal microscopy showed cortactin/MHCIIA colocalization in wild type but not in MHCIIB (-/-) fibroblasts. bFGF activates Erk1/2 in wild type and MHCIIB (-/-) fibroblasts and induces the formation of aberrant membrane projections in MHCIIB (-/-) fibroblasts. In conclusion, our results contribute to characterize the structural and contractile role of each myosin II isoforms in the physiology of the cell.
42

Les rôles distincts des isoformes de myosine II non-musculaire dans des processus cellulaires impliquant le cytosquelette d'actine

Solinet, Sara 12 1900 (has links)
No description available.
43

The C. elegans primordial germline : a robust syncytial precursor for a thriving expansion

Bauer, Jack 09 1900 (has links)
La cellule est l’unité à la base de la vie. Elle est généralement délimitée par sa membrane et contient un noyau et du cytoplasme en plus d’autres composantes. Les cellules se divisent afin de maintenir et de perpétuer la vie par duplication de leur matériel génétique et par leur séparation en deux cellules physiquement distinctes durant la cytocinèse. Cependant, la division cellulaire est parfois modifiée et aboutit à la formation d’un tissu contenant plusieurs noyaux bordés d’une membrane unique appelé syncytium. Les syncytia sont fréquemment retrouvés chez les organismes vivants, bien que leurs fonctions et mode de formation restent peu compris. L’organisation en syncytium est conservée chez tous les animaux étudiés à ce jour au niveau de la lignée germinale dans laquelle les cellules partagent un cytoplasme commun par l’intermédiaire d’un pont intercellulaire stable. Dans la majorité des lignées germinales étudiées, les cellules sont directement connectées l’une à l’autre par un pont intercellulaire stable qui émerge de cytocinèses incomplètes. Cependant, certaines lignées germinales sont organisées autour d’une cavité commune à laquelle chaque cellule germinale est connectée. Dans ces lignées germinales, les mécanismes qui mènent à l’expansion du syncytium sont peu compris. Ma thèse décrit l’utilisation de la lignée germinale primordiale de C. elegans à son premier stade larvaire pour mieux comprendre l’organisation, l’expansion et la fonction des lignées germinales syncytiales. En utilisant la microscopie électronique et confocale, j’ai découvert que l’organisation du syncytium est fixée au premier stade larvaire. En effet, les deux cellules germinales primordiales (CGP) sont chacune individuellement connectée à une cavité cytoplasmique centrale par le biais de ponts intercellulaires stables. Nous avons nommé cette cavité le proto-rachis car l’organisation des CGP est identique à l’organisation de la gonade adulte. Chez l’adulte, les ponts intercellulaires qui connectent les cellules germinales au rachis sont stabilisés par des régulateurs d’actomyosine. Nous avons vérifié si cela était également le cas dans la gonade au premier stade larvaire. Tous les régulateurs présents dans la gonade adulte, sont aussi présent dans les ponts intercellulaires des CGP, mais la lignée germinale primordiale est réfractaire à la perturbation de la fonction de ces régulateurs. Ce résultat suggère que les régulateurs d’actomyosine sont organisés de manière très stable au premier stade larvaire. Afin de mieux comprendre comment le syncytium se développe dans la lignée germinale de C. elegans, j’ai ensuite suivi la première division des CGP par microscopie à temps réel. J’ai mis en évidence que l’anneau de cytocinèse se stabilise, puis se déplace vers le proto-rachis jusqu’à qu’il s’y intègre. Ces résultats indiquent que le syncytium se développe par cytocynèse incomplète. De plus, mes résultats montrent que la connexion au proto-rachis est maintenue durant la division des CGP. C’est pourquoi nous proposons un modèle pour l’expansion du syncytium dans lequel l’anneau de cytocinèse stabilise pour connecter une des cellules filles au proto-rachis, tandis que l’autre cellule fille est connecté par l’anneau stable qu’elle aura hérité de la cellule mère. Enfin, pour s’assurer que les mécanismes d’expansion du syncytium observés durant la division des CGP sont conservés au cours du développement de la gonade, j’ai conceptualisé et créé un dispositif de micro-fluidique qui en théorie permettrait de suivre plusieurs séries de division des CGP. En somme, mon travail de doctorat a fourni une caractérisation détaillée de la structure du syncytium dans la lignée germinale de C. elegans au premier stade larvaire, ainsi qu’un modèle pour l’expansion du syncytium. Mes découvertes indiquent que malgré des différences dans l’organisation des syncytia, la cytocinèse incomplète est un mécanisme conservé dans toutes les lignées germinales animales. Des travaux futurs seront nécessaires pour découvrir quelles voies de signalisation moléculaires sont sous-jacentes aux mécanismes de formation des syncytia, et ainsi de mieux comprendre quelle est la fonction de ces structures fascinantes. / The cell constitutes the basic unit of life. It is generally delimited by its membrane and contains a nucleus and cytoplasm amongst other components. To maintain and perpetuate life, cells divide by duplicating their genetic material, and by physically separating into two distinct cells during the process called cytokinesis. However, cell division is sometimes modified and leads to the formation of a tissue in which several nuclei are delimited by a single membrane, called a syncytium. Syncytial tissues are common amongst living organisms, but why and how they form remains unclear. The syncytial architecture is conserved in all studied animal germlines where germ cells share a common cytoplasm through stable intercellular bridges. In most animal germlines, the germ cells are directly connected with one another, and the stable intercellular bridges that connect the cells are known to arise from regulated incomplete cytokinesis. However, some germlines are organized around a central common cavity to which each germ cell is connected. In such germlines, the mechanisms of syncytium expansions remain unknown. My thesis describes the use of the C. elegans germline primordium at the first larval stage to better understand the organization, the expansion, and the function of germline syncytia. Using electron and confocal microscopy I found that the organization of the syncytium is established at the first larval stage. The two germ cells called the primordial germ cells (PGCs) each connect to a central cytoplasmic cavity through stable intercellular bridges. Because this organization is identical to the adult germline where each germ cell is connected to the central rachis, we termed the cavity between the PGCs proto-rachis. In the adult gonad, the intercellular bridges that connect the germ cells to the rachis are stabilized by actomyosin regulators, so I verified if this was also the case in the first larval stage gonad. All the regulators that localize to adult intercellular bridges were also present between the PGCs, but the primordial germ line is refractory to perturbation of these regulators. This suggests that the actomyosin regulators are organized in a very stable manner in the first larval stage germline. I next tracked the first division of the PGCs with live imaging to better understand how the syncytium expands in the C. elegans germline. I found that the cytokinetic ring stabilizes, then displaces towards the proto-rachis until it integrates into the syncytial structures. This finding suggests the syncytium expands by incomplete cytokinesis. In addition, my results indicate that the connection to the proto-rachis was maintained during PGCs division. We therefore propose a model in which the cytokinetic ring stabilizes and connects one of the daughter cells to the proto- rachis while the other cell is connected through the inherited stable ring from the mother cell. Finally, I designed and a created a microfluidic device that in theory would allow us to live image several rounds of PGCs division. This would confirm if the mechanisms of syncytium expansion that we observed during the first division of the PGCs are conserved in further development. My work has provided a detailed characterization of the syncytial structure in the C. elegans germline primordium as well as a model for syncytium expansion. My findings indicate that despite differences in the organization of the syncytium, incomplete cytokinesis is conserved as the mechanism for syncytium expansion in all animal germlines. Further research will be necessary to bring to light the molecular pathways underlying syncytium formation to have a better understanding of the function of these fascinating structures.

Page generated in 0.0455 seconds