• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Relationship between Inflammatory Stimulation and Cell Biomechanics in Intervertebral Disc Degeneration

Jacobsen, Timothy January 2022 (has links)
Intervertebral disc (IVD) degeneration (DD) affects over 40% of adults, is a leading cause of disability and costs over $100 billion in economic burden annually. DD is a multifactorial process ultimately leading to tissue breakdown and loss of functionality. DD is associated with increased levels of pro-inflammatory cytokines within the disc and the catabolic effect of inflammatory stimulation on disc cell biology has been well studied. As part of its physiological functioning the disc experiences mechanical, hydrostatic, and osmotic stimuli. Cells within the disc are mechanosensitive to these signals, where hyper physiological and damaging physical signals can perpetuate degenerative effects in the disc. Despite the known contributions of inflammatory stimulation and biomechanics to DD individually, the interaction of inflammation and biomechanics in the IVD is still not well understood. The objective of this thesis is to examine the role of inflammatory stimulation on cellular biophysical properties in the disc, subsequent implications at the tissue level, and its contributions to DD. Here the cell cytoskeleton and actomyosin contractility are identified as key regulators of the response of cellular properties to inflammation. Actomyosin contractility is further identified as a regulator of well-known biological responses to inflammatory stimulation within the disc including ECM catabolism and altered disc tissue mechanics. Altered cellular biophysical properties observed in clinical human DD samples indicate the inflammatory milieu present in DD drive changes in cellular mechanics. Increasing actomyosin contractility is shown to be effective in mitigating the effects of inflammation on cellular biophysical properties and subsequent degenerative effects highlighting its potential as a therapeutic for the treatment of DD.
12

Investigating the molecular mechanisms of cooperative tension generation in skeletal and cardiac muscle by altering acto-myosin interactions and engineering troponin C calcium binding kinetics /

Kreutziger, Kareen L. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 152-168).
13

The Actomyosin-Like Protein of Naegleria Gruberi Amoeba

Lastovica, Albert J. 05 1900 (has links)
<p> Amoeboid Motion is thought to be due to the action of an actomyosin- like protein present in the cytoplasm of amoeba. A co-ordinated net- 0 work of microfilaments of the actomyosin-like protein, 70 A in diameter, may be the mechanical means of accomplishing amoeboid motion. The microfilaments formed of the actomyosin-like protein, may be capable of rapid association and dissociation in vivo. In this thesis, the cytoplasm of Naegleria gruberi amoeba has been shown to possess a protein similar to actomyosin. Characterization of the ATPase activity, superprecipitating ability, electrophoretic behaviour and microfilament producing ability reveal that the actomyosin-like protein of Naegleria gruberi amoeba is quite similar to the analogous protein in Physarum polycephalum. Naeqleria gruberi may be an ideal organism in which to study the interconversion of one form of a biologically active macromolecule to another., In different stages of the life cycle, amoeboid motion, flagellar beating and mitotic spindles are present. It is possible that the same contractile molecules in different forms may perform different functions. </P> / Thesis / Master of Science (MSc)
14

Fibers to Forms: Cellular Prestress of Extracellular Matrix Fibers Controls Nonlinear Morphogenetic Mechanics in The Looping Small Intestine

Durel, John F. January 2024 (has links)
The characteristic loops of the small intestine arise during embryonic development from differential growth as the intestinal tube elongates against the constraint of its attached dorsal mesentery, which compresses the tube until it buckles into loops. The number and shape of loops are conserved for a given species and are predictable from tube and mesentery geometries and stiffnesses. Importantly, the mesentery readily accommodates a certain amount of stretch from the elongating tube before stiffening by several orders of magnitude and resisting further extension—thereby dictating how differential growth translates into buckling forces. While such constitutive nonlinearity is well appreciated in adult soft tissues, its determinants and consequences remain largely unexplored in buckling morphogenesis and embryogenesis as a whole. In this work, we undertake to establish a mechanistic link between molecular control of cell behaviors and organ-scale buckling morphogenesis of the small intestine. Using pharmacological treatments, mechanical testing, image analysis of tissue microstructure, and computational modeling, we test the hypothesis that actomyosin contractility regulates mesentery constitutive nonlinearity and thereby organ-scale buckling of the small intestine through its effects on extracellular matrix recruitment. Our findings suggest that highly contractile cells could act as a mechanical ‘clutch’, modulating the stiffening transition of the mesentery by compacting stiff matrix fibers that must be decompressed by applied forces before contributing to stretch resistance. However, we also find that low levels of contractility control the initial soft response of the mesentery through a mechanism largely independent of matrix fiber straightness and alignment. Despite the apparent simplicity of buckling from a mechanical standpoint, its underlying biological determinants are evidently quite complex. The present study begins to unpack those intricate links between the molecular and biophysical aspects of buckling morphogenesis by revealing how cell forces and matrix organization interactively dictate tissue-scale mechanics during development in sometimes counterintuitive ways.
15

Conformational Studies of Myosin and Actin with Calibrated Resonance Energy Transfer

Xu, Jin 05 1900 (has links)
Resonance energy transfer was employed to study the conformational changes of actomyosin during ATP hydrolysis. To calibrate the technique, the parameters for resonance energy transfer were defined. With conformational searching algorithms to predict probe orientation, the distances measured by resonance energy transfer are highly consistent with the atomic models, which verified the accuracy and feasibility of resonance energy transfer for structural studies of proteins and oligonucleotides. To study intramyosin distances, resonance energy transfer probes were attached to skeletal myosin's nucleotide site, subfragment-2, and regulatory light chain to examine nucleotide analog-induced structural transitions. The distances between the three positions were measured in the presence of different nucleotide analogs. No distance change was considered to be statistically significant. The measured distance between the regulatory light chain and nucleotide site was consistent with either the atomic model of skeletal myosin subfragment-1 or an average of the three models claimed for different ATP hydrolysis states, which suggested that the neck region was flexible in solution. To examine the participation of actin in the powerstroke process, resonance energy transfer between different sites on actin and myosin was measured in the presence of nucleotide analogs. The efficiencies of energy transfer between myosin catalytic domain and actin were consistent with the actoS1 docking model. However, the neck region was much closer to the actin filament than predicted by static atomic models. The efficiency of energy transfer between Cys 374 and the regulatory light chain was much greater in the presence of ADP-AlF4, ADP-BeFx, and ADP-vanadate than in the presence of ADP or no nucleotide. These data detect profound differences in the conformations of the weakly and strongly attached crossbridges which appear to result from a conformational selection that occurs during the weak binding of the myosin head to actin. The resonance energy transfer data exclude a number of versions of the swinging lever arm model, and indicate that actin participation is indispensable for conformational changes leading to force generation. The conformational selection during weak binding at the actomyosin interface may precock the myosin head for the ensuing powerstroke.
16

Intercellular coupling and mechanical feedback during tissue morphogenesis / Couplages intercellulaires et rétrocontrôles mécaniques au cours de la morphogenèse

Bailles, Anaïs 20 December 2018 (has links)
Un des mécanismes principaux de la morphogenèse des organismes est la contraction des réseaux d’actine sous l’effet du moteur moléculaire Myosine II. L’invagination de l’endoderme postérieur de Drosophila est causée par la contraction apicale des cellules par MyoII, mais la cause de sa déformation polarisée est inconnue. Nous avons découvert une vague de Rho1, MyoII et de déformation qui se propage à l’échelle du tissu et sous-tend la déformation de l’endoderme. MyoII est d’abord activée dans le primordium de l’endoderme par un ligand de GPCR, Fog. L’activation apicale de MyoII se propage ensuite à travers l’épithélium dorsal à 2.2 ± 0.2 µm/min. La dynamique de la vague n’est définie ni par les niveaux de Fog ni par leur motif d’expression. A la place, l’activité de MyoII est nécessaire pour l’activation intracellulaire de Rho1 et sa propagation à travers le tissu, indiquant une boucle de rétroaction. Des simulations d’un matériau viscoélastique contractile montrent qu’une boucle de rétroaction basée sur la tension peut générer une vague. Des perturbations de l’environnement mécanique du tissu avec des moyens génétiques ou mécaniques résultent en une augmentation de l’activité de MyoII et une diminution de la vitesse de la vague. Les déformations ou les forces du tissu procurent donc un rétrocontrôle sur l’activation de Rho1/MyoII lors de la vague, contrôlant sa dynamique. A l’échelle cellulaire, la vague de déformation implique la compression basale des cellules et l’étalement et l’adhésion du cortex apical sur la membrane vitelline, suivi d’un détachement. Ainsi la morphogenèse observée émerge de la propagation stimulée mécaniquement d’une vague de déformation 3D. / One of the main mechanisms of organism morphogenesis is the contraction of actin filament networks powered by non-muscle Myosin II motor proteins (MyoII). Drosophila presumptive posterior endoderm invagination is caused by MyoII-dependent apical constriction, but the cause of its polarized deformation is unknown. We unravelled a tissue scale wave of high Rho1 and MyoII activation and deformation which underlies the polarized deformation of the endoderm. MyoII is first activated medio-apically in cells within the endoderm primordium by the GPCR ligand Fog. Subsequently, apical MyoII activation propagates across the dorsal epithelium at a constant speed of 2.2 ± 0.2 µm/min. MyoII wave dynamics are set neither by Fog levels nor expression pattern. Instead, both intracellular Rho1 activation and its propagation across the tissue require sustained MyoII activity, indicating a positive feedback from contractility into Rho1 activity. Through simulations of a contractile viscoelastic material we found that a stress-based feedback loop could generate a wave. Perturbations of the tissue mechanical environment with both genetic and physical means result in an increase in MyoII activity and a strong reduction of the wave speed. Tissue deformation or stress thus provides a feedback onto Rho1/MyoII activity during the wave, controlling its dynamics. At the cell scale, the deformation wave involves cells basal compression and apical cortex spreading and adhering onto the vitelline membrane, followed by de-adhesion, that correlates with MyoII activation and propagation within cells. Thus the observed morphogenesis emerges from a mechanically driven wave of 3D deformation.
17

Probing the regulatory mechanisms of the actomyosin system in motile cells

Barbosa Pfannes, Eva Katharina January 2011 (has links)
Actin-based directional motility is important for embryonic development, wound healing, immune responses, and development of tissues. Actin and myosin are essential players in this process that can be subdivided into protrusion, adhesion, and traction. Protrusion is the forward movement of the membrane at the leading edge of the cell. Adhesion is required to enable movement along a substrate, and traction finally leads to the forward movement of the entire cell body, including its organelles. While actin polymerization is the main driving force in cell protrusions, myosin motors lead to the contraction of the cell body. The goal of this work was to study the regulatory mechanisms of the motile machinery by selecting a representative key player for each stage of the signaling process: the regulation of Arp2/3 activity by WASP (actin system), the role of cGMP in myosin II assembly (myosin system), and the influence of phosphoinositide signaling (upstream receptor pathway). The model organism chosen for this work was the social ameba Dictyostelium discoideum, due to the well-established knowledge of its cytoskeletal machinery, the easy handling, and the high motility of its vegetative and starvation developed cells. First, I focused on the dynamics of the actin cytoskeleton by modulating the activity of one of its key players, the Arp2/3 complex. This was achieved using the carbazole derivative Wiskostatin, an inhibitor of the Arp2/3 activator WASP. Cells treated with Wiskostatin adopted a round shape, with no of few pseudopodia. With the help of a microfluidic cell squeezer device, I could show that Wiskostatin treated cells display a reduced mechanical stability, comparable to cells treated with the actin disrupting agent Latrunculin A. Furthermore, the WASP inhibited cells adhere stronger to a surface and show a reduced motility and chemotactic performance. However, the overall F-actin content in the cells was not changed. Confocal microscopy and TIRF microscopy imaging showed that the cells maintained an intact actin cortex. Localized dynamic patches of increased actin polymerization were observed that, however, did not lead to membrane deformation. This indicated that the mechanisms of actin-driven force generation were impaired in Wiskostatin treated cells. It is concluded that in these cells, an altered architecture of the cortical network leads to a reduced overall stiffness of the cell, which is insufficient to support the force generation required for membrane deformation and pseudopod formation. Second, the role of cGMP in myosin II dynamics was investigated. Cyclic GMP is known to regulate the association of myosin II with the cytoskeleton. In Dictyostelium, intracellular cGMP levels increase when cells are exposed to chemoattractants, but also in response to osmotic stress. To study the influence of cyclic GMP on actin and myosin II dynamics, I used the laser-induced photoactivation of a DMACM-caged-Br-cGMP to locally release cGMP inside the cell. My results show that cGMP directly activates the myosin II machinery, but is also able to induce an actin response independently of cAMP receptor activation and signaling. The actin response was observed in both vegetative and developed cells. Possible explanations include cGMP-induced actin polymerization through VASP (vasodilator-stimulated phosphoprotein) or through binding of cGMP to cyclic nucleotide-dependent kinases. Finally, I investigated the role of phosphoinositide signaling using the Polyphosphoinositide-Binding Peptide (PBP10) that binds preferentially to PIP2. Phosphoinositides can recruit actin-binding proteins to defined subcellular sites and alter their activity. Neutrophils, as well as developed Dictyostelium cells produce PIP3 in the plasma membrane at their leading edge in response to an external chemotactic gradient. Although not essential for chemotaxis, phosphoinositides are proposed to act as an internal compass in the cell. When treated with the peptide PBP10, cells became round, with fewer or no pseudopods. PH-CRAC translocation to the membrane still occurs, even at low cAMP stimuli, but cell motility (random and directional) was reduced. My data revealed that the decrease in the pool of available PIP2 in the cell is sufficient to impair cell motility, but enough PIP2 remains so that PIP3 is formed in response to chemoattractant stimuli. My data thus highlights how sensitive cell motility and morphology are to changes in the phosphoinositide signaling. In summary, I have analyzed representative regulatory mechanisms that govern key parts of the motile machinery and characterized their impact on cellular properties including mechanical stability, adhesion and chemotaxis. / Das Ziel der Arbeit war es, die regulatorischen Mechanismen der Zellmotilität zu untersuchen. Dazu habe ich für jedes Stadium dieses Prozesses einen repräsentativen regulatorischen Schritt ausgewählt und genauer untersucht: Die Regelung des Arp2/3 Komplexes durch WASP (Aktinsystem), die Rolle von cGMP in der Myosin II-Regulation (Myosinsystem) und der Einfluss von Phosphoinositiden im intrazellulären Signalprozess (Rezeptor-Signalweg). Die soziale Amöbe Dictyostelium discoideum wurde als Modellorganismus für diese Arbeiten gewählt. Gründe für diese Wahl waren die bereits vorliegenden detaillierten Kenntnisse über das Zytoskelett dieser Zellen, ihre einfache Handhabbarkeit im Labor, und die hohe Motilität der Zellen im vegetativen und entwickelten Zustand. Als Erstes analysierte ich die Dynamik des Aktin-Zytoskeletts durch Modulation der Aktivität des Arp2/3-Komplexes. Dafür benutzte ich das Carbazol-Derivat Wiskostatin, ein Inhibitor des Arp2/3-Aktivators WASP. Zellen, die mit Wiskostatin behandelt wurden, zeigten eine runde Form mit wenigen oder keinen Pseudopodien. Mit Hilfe des mikrofluidischen cell squeezer device konnte ich zeigen, dass Wiskostatin-behandelte Zellen eine geringere mechanische Stabilität aufweisen, vergleichbar mit Zellen unter dem Einfluss des Aktin-depolymerisierenden Wirkstoffes Latrunculin A. Darüber hinaus zeigen Wiskostatin behandelten Zellen eine erhöhte Substratadhäsion und eine verringerte Motilität und chemotaktische Effizienz. Der F-Aktingehalt der Zelle insgesamt blieb jedoch unverändert. Konfokal- und TIRF-mikroskopische Aufnahmen zeigten, dass die Zellen einen intakten Aktinkortex aufweisen. Es konnten lokalisierte dynamische Regionen erhöhter Aktinpolymerisation beobachtet werden, die jedoch nicht zur Ausbildung von Membrandeformationen führten. Daraus kann man rückschließen, dass die Mechanismen der Krafterzeugung im Aktin-Zytoskelett in WASP-inhibierten Zellen beeinträchtigt sind. Vermutlich liegt in diesen Zellen eine veränderte Mikroarchitektur des kortikalen Netzwerks vor, die zu einer verminderten Steifigkeit der Zelle führt, so dass die zur Bildung von Pseudopodien erforderlichen Kräfte nicht entfaltet werden können. Als Zweites wurde die Rolle von cGMP in der Myosin II-Dynamik untersucht. Es ist bekannt, dass cGMP die Assoziation von Myosin II mit dem Zytoskelett reguliert. In Dictyostelium steigt die intrazelluläre Konzentration von cGMP in Gegenwart von chemoattraktiven Lockstoffen sowie in Antwort auf osmotischen Stress. Um den Einfluss von cGMP auf die Aktin und Myosin II -Dynamik zu untersuchen, benutzte ich laserinduzierte Photoaktivierung von DMACM-caged-Br-cGMP, um cGMP lokal innerhalb der Zelle freizusetzen. Meine Ergebnisse zeigten, dass intrazelluläres cGMP direkt zur Aktivierung von Myosin II führt, jedoch auch Aktinantworten unabhängig vom cAMP-Rezeptorsignalweg induzieren kann. Die Aktinreaktion wurde sowohl in vegetativen als auch in entwickelten Zellen beobachtet. Eine mögliche Erklärung könnte die cGMP-induzierte Aktinpolymerisation über VASP (vasodilator-stimulated phosphoprotein) sein oder über die Bindung von cGMP an Nukleotid-abhängige Proteinkinasen. Als dritten Punkt meiner Arbeit untersuchte ich die Rolle der Phosphoinositide mit Hilfe des Phosphoinositide-bindenden Proteins PBP10, das bevorzugt an PIP2 bindet. Phosphoinositiden können Aktin-bindende Proteine zu definierten subzellulären Orten rekrutieren und ihre Aktivität verändern. Sowohl Neutrophile als auch entwickelte Dictyostelium Zellen produzieren PIP3 in der Plasmamembran an ihrer leading edge in Antwort auf externe Gradienten chemischer Lockstoffe. Obwohl Zellen auch ohne PIP3 chemotaktisches Verhalten zeigen, werden Phosphoinositide im Allgemeinen mit dem inneren chemotaktischen Kompass der Zelle in Verbindung gebracht. Mit dem Peptid PBP10 behandelte Zellen nahmen eine runde Form an, mit wenigen oder keinen Pseudopodien. PH-CRAC -Translokation zur Membran konnte in PBP10-behandelten Zellen selbst bei geringen cAMP-Stimuli weiterhin beobachtet werden. Ungerichtete wie auch gerichtete Zellmotiliät waren jedoch beeinträchtigt. Meine Daten zeigen, dass die Abnahme des PIP2-Pools in der Zelle durch PBP10 ausreicht, um die Zellmotilität zu beeinträchtigen, dass jedoch genug PIP2 erhalten bleibt um in Folge einer Rezeptorstimulation PIP3 zu produzieren. Die Ergebnisse demonstrieren daher, wie empfindlich Zellmotilität und -morphologie gegenüber Modifikationen im Phosphoinositid-Signalweg sind. Zusammenfassend habe ich mehrere repräsentative Beispiele für regulatorische Mechanismen der Zellmotilität untersucht und deren Auswirkung auf Eigenschaften der Zelle wie mechanische Stabilität, Zelladhäsion und Chemotaxis charakterisiert.
18

Practical applications for an actomyosin-based biosensor in Baltic Sea water

Pennsäter, Maria January 2013 (has links)
Seawater and wastewater all around the world contain toxins and pollutants, not the least drug residues, including hormoneswhich disturb the ecosystems and antibiotics with growing multi-drug resistance of bacteria as a result. The effects onecosystems and mankind can be severe and with this general fact the need for proper analysis devices increases. This haspromoted further studies to establish devices for detection of analytes with high selectivity and high sensitivity. In this thesis Ipresent a unique device exploiting capture of antigen on antibody conjugated actin filaments and subsequent transportationof the antigen in Baltic Sea water using heavy meromyosin (HMM) motor fragments from muscle myosin. The model-antibody,anti-rIgG, used in the study, was covalently attached to the actin filaments, capturing a model-analyte, rIgG that was dissolvedin the Sea water. Furthermore, the effect of Baltic Sea water on HMM propelled actin filament transportation in the in vitromotility assay was studied. An effect was observed with Baltic Sea water, supplemented with standard adenosine 5’-triphosphate (ATP) and oxygen scavenger systems, reducing the sliding velocity by approximately 80%. However the effect wasreversible which is of great advantage in relation to the development of a future biosensor device incorporating actomyosindriven transports. Additionally, evidence was found that the substance A slightly enhanced the function of the proteins whenstored on a motility assay surface at 4-8 °C for up to ten days, of value for practical applications of a potential biosensordevice. The results demonstrate the potential that antigen from sea water could be captured and transported by actomyosinto certain detector areas and eventually become concentrated which would increase the sensitivity of the device.
19

The Role of Mechanically Gated Ion Channels in Dorsal Closure During Drosophila Morphogenesis

Hunter, Ginger January 2012 (has links)
<p>Physical forces play a key role in the morphogenesis of embryos. As cells and tissues change shape, grow, and migrate, they exert and respond to forces via mechanosensitive proteins and protein complexes. How the response to force is regulated is not completely understood. </p><p>Dorsal closure in Drosophila is a model system for studying cell sheet forces during morphogenesis. We demonstrate a role for mechanically gated ion channels (MGCs) in dorsal closure. Microinjection of GsMTx4 or GdCl<sub>3</sub>, inhibitors of MGCs, blocks closure in a dose-dependent manner. UV-mediated uncaging of intracellular Ca<super>2+</super> causes cell contraction whereas the reduction of extra- and intracellular Ca<super>2+</super> slows closure. Pharmacologically blocking MGCs leads to defects in force generation via failure of actomyosin structures during closure, and impairs the ability of tissues to regulate forces in response to laser microsurgery.</p><p>We identify three genes which encode candidate MGC subunits that play a role in dorsal closure, <italic>ripped pocket</italic>, <italic>dtrpA1</italic>, and <italic>nompC</italic>. We find that knockdown of these channels either singly or in combination leads to defects in force generation and cell shapes during closure. </p><p>Our results reveal a key role for MGCs in closure, and suggest a mechanism for the coordination of force producing cell behaviors across the embryo.</p> / Dissertation
20

Regulation of apical basal polarity and mesoderm invagination by the E3 ubiquitin ligase Neuralized in Drosophila / Régulation de la polarité apico basale et de l'invagination du mésoderme par l'E3 ubiquitine ligase neuralized chez la Drosophile

Perez Mockus, Dago Jose Gantas 27 September 2016 (has links)
Les cellules épithéliales fournissent différentes fonctions biologiques: elles servent de barrière entre l'extérieur et l'intérieur d'un organisme et forment un continuum mécanique à travers les jonctions adhérentes qui les connectent. Au cours du développement, elles subissent des modifications extrêmes pour former l'embryon: elles changent de forme, modifient leur position relative ou perdent leur intégrité épithéliale. La plus part de ces changement se basent sur la modulation de l'actomyosine corticale et jonctionale, et sur la modulation des protéines qui définissent et maintiennent la polarité apico basale. Neuralized (Neur) est une E3 ubiquitine ligase qui est conservée des nématodes jusqu'aux mammifères. Elle a été découverte pour son rôle dans la régulation de la signalisation Delta/Nocth. Dans ce travail on décrit deux autres functions Notch-indépendantes de Neur dans le remodelage des épithéliums. En premier temps, on montre que Neur régule négativement la protéine apicale Crumbs à travers une isoforme de Stardust, ce qui permet le remodelage de l'intestin postérieur de la Drosophile et favorise la migration trans-epithéliale des cellules germinales primordiales. Puis, on présente que, pendant la gastrulation, Neur module la contractilité de l'actomyosine dans le mésoderme, et indirectement dans l'ectoderme, pour contrôler la formation du sillon ventral. / Epithelial cells serve many biological functions: they act as a barrier to separate the interior from the exterior, and form a mechanical continuum through the junctions that interconnect them. During development, they undergo dramatic changes to shape the embryo: they change their shape, modify their relative position or lose their epithelial integrity. Most of these changes rely on the modulation of cortical and junctional actomyosin, and the regulation of the proteins that define and maintain the epithelial apical/basal polarity. Neuralized (Neur) is an E3 ubiquitin ligase conserved from nematodes to mammals. It was first discovered for its role in the regulation of Delta/Notch signalling. Here we describe two Notch independent roles of Neur in epithelial remodelling. First, we show that Neur negatively regulates the apical protein Crumbs though a specific isoform of Stardust. This allows the remodelling of the drosophila posterior midgut and favours the trans-epithelial migration of the primordial germ cells. Finally, we present that Neur modulates actomyosin contractility in the mesoderm, and indirectly in the ectoderm, to control ventral furrow formation during gastrulation.

Page generated in 0.0474 seconds