• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la fonction de Patj dans la régulation de la polarité épithéliale. / Study of the function of Patj in the regulation of the epithelial polarity.

Penalva, Clothilde 19 December 2014 (has links)
La polarité apico-basale des cellules épithéliales est requise pour le développement de l’épithélium, le maintien de son intégrité et sa fonction. Elle est définie par les relations dynamiques d’un réseau de protéines de polarité qui se localisent asymétriquement et s’excluent mutuellement pour déterminer les différents domaines corticaux. Le complexe Crumbs (Crb) est un déterminant clé du domaine apical, essentiel et suffisant pour sa définition. Patj, une protéine contenant un domaine L27 et 4 domaines PDZ, a été identifiée comme faisant partie biochimiquement du complexe Crb (via Stardust), mais sa fonction reste à préciser. Au cours de ma thèse j’ai analysé la fonction Patj chez la drosophile. La mutation Patj est létale et induit une perte de Crb de la membrane apicale dans l’épithélium folliculaire, mais pas dans l’embryon. La fonction de Patj est donc tissu spécifique. J’ai pu mettre en évidence que Patj régule positivement Crb et que les domaines PDZ1 ou PDZ4 associés au domaine L27 sont suffisants pour la fonction de Patj. J’ai de plus tenté de déterminer comment Patj régule Crb à l’échelle moléculaire. Tout d’abord, l’analyse fonctionnelle in vivo suggère que Patj régulerait la stabilité de Crb indirectement en favorisant le recrutement d’autres déterminants du domaine apical au sein du complexe. Ensuite, des approches biochimiques et génétiques ont permis de montrer qu’en plus d’interagir indirectement avec Crb, Patj interagit aussi directement via ces domaines PDZ1 et PDZ4. Ces données permettent de proposer un modèle mécanistique dans lequel Patj en liant à la fois Sdt et Crb formerait des dimères de Crb, qui en association avec sa dimèrisation extracellulaire déjà connue permettrait la formation d’oligomères de Crb à la membrane apicale. L’oligomérisation de Crb favoriserait son activité de déterminant apical. De plus, j’ai observé une redondance entre Patj et Lin-7, un autre membre du complexe Crb, dans la polarité apico-basale, une telle fonction pour Lin-7 n’ayant pas encore été reportée. Ainsi, mes travaux apportent de nouveaux éléments pour la compréhension de la polarité épithéliale. / Apico-basal polarity is required for epithelium development, function and integrity. Polarization is defined by a network of polarity proteins that are localized asymmetrically and the dynamic interplay between them. Crb is a key determinant of the apical domain, necessary and sufficient for its identity. Patj, a protein containing a L27 domain and four PDZs domains, has been identified as a core component of the Crb complex, as it interacts with Crb through Sdt. But its function remains elusive. During my thesis I investigated Patj function in Drosophila. Patj mutation is lethal and induces a decrease of Crb from the apical domain in the follicular epithelium, but not in embryonic epithelium. Thus, Patj function is tissue-specific. Patj positively regulates Crb, and the PDZ1 or PDZ4 together with the L27 domain of Patj are sufficient for its function. Then, I focused on the molecular mechanism underlying Crb regulation. In vivo analysis suggests that Patj regulates Crb stability indirectly by modulating its ability to recruit apical proteins. Biochemical and genetics analyses allow showing that in addition of its indirect interaction through Sdt, Patj interacts directly with Crb through its PDZ1 and PDZ4. Extra-cellular dimerisation of Crb is involved in a feedback promoting its apical localization. Patj with Crb direct interaction could participate to this feedback via an intra- cellular dimerisation, allowing Crumbs oligomerisation at the apical membrane. In addition, I have seen that Patj is redundant with Lin-7, another core component of Crb complex, for apico- basal polarity. In conclusion my thesis work provides new clues for the understanding of epithelial polarity regulation.
2

Etude du rôle des protéines de polarité Apico-Basale dans l' organisation des jonctions adhérentes / Role of apico-basal polarity proteins in E-Cadherin organization

Salis, Pauline 19 May 2015 (has links)
Epithelial tissues are composed of a sheet of adherent cells and are present in all metazoans. Their broad function is to compartmentalize tissues and enable the regulated exchange of nutrients and waste between the internal and external environments. To accomplish this function, cells require a specific organization: an apico-basal polarity that provides directionality and intercellular adhesion mediated by adherens junctions that hold cells together. How the epithelia architecture is initiated and maintained remains to be fully elucidated. Adherens junctions and the polarity proteins are functionally linked, as a loss of the main component of AJs: E-cadherin leads to a loss of apico-basal polarity, while disturbing apico-basal polarity results in a re-localization of E-Cadherin. Therefore is challenging to study either pathway in isolation.During my thesis I explored the role of Crumbs, a polarity protein, in the regulation of E-Cadherin in both AJ maturation and maintenance. During maturation of AJs in Drosophila embryo, I demonstrated for the first time by using quantitative high-resolution microscopy PALM that Crumbs regulates E-Cadherin clusters size and their homogenous distribution along the junction. In conclusion, my thesis work provides the first dissection of polarity proteins in E-Cadherin regulation apart from polarity pathways. / Epithelial tissues are composed of a sheet of adherent cells and are present in all metazoans. Their broad function is to compartmentalize tissues and enable the regulated exchange of nutrients and waste between the internal and external environments. To accomplish this function, cells require a specific organization: an apico-basal polarity that provides directionality and intercellular adhesion mediated by adherens junctions that hold cells together. How the epithelia architecture is initiated and maintained remains to be fully elucidated. Adherens junctions and the polarity proteins are functionally linked, as a loss of the main component of AJs: E-cadherin leads to a loss of apico-basal polarity, while disturbing apico-basal polarity results in a re-localization of E-Cadherin. Therefore is challenging to study either pathway in isolation.During my thesis I explored the role of Crumbs, a polarity protein, in the regulation of E-Cadherin in both AJ maturation and maintenance. During maturation of AJs in Drosophila embryo, I demonstrated for the first time by using quantitative high-resolution microscopy PALM that Crumbs regulates E-Cadherin clusters size and their homogenous distribution along the junction. In conclusion, my thesis work provides the first dissection of polarity proteins in E-Cadherin regulation apart from polarity pathways.
3

The Role of Retromer in Regulating the Apical-Basal Polarity and the Immune Response during Drosophila Development

Zhou, Bo 20 April 2012 (has links)
No description available.
4

Role of crumbs and bazooka in the organization and distribution of DE-cadherin in Drosophila embryo / Rôle de crumbs et de bazooka dans l'organisation et la distribution de la DE-cadherine dans l'embryon de Drosophila

Aksenova, Veronika 18 December 2017 (has links)
Les tissus épithéliaux sont des couches de cellules adhérentes qui servent de barrières entre différents compartiments morphologiques et procurent un transport directionnel de molécules. L’action coopérative de plusieurs déterminants de la polarité gouverne l’identité et la morphogenèse spécifiques de ces domaines : 1) le cytosquelette d’actomyosine, 2) les jonctions adhérentes (AJs) basées sur la E-cadhérine et 3) les complexes de polarité conservés au cours de l’évolution. Une perte de l’adhérence via la DE-cadhérine (DE-Cad) conduit à des défauts de polarité apico-basale, tandis que la localisation apicale de DE-Cad nécessite les protéines de polarité Crumbs (Crb) et Bazooka (Baz) (L’homologue de Par3 chez la mouche). Notablement, DE-Cad forme des amas qui co-localisent partiellement avec les amas de Baz, génèrent l’adhésion intercellulaire et transmettent la tension. Les mécanismes impliqués dans le contrôle de la taille, le nombre, la répartition et la dynamique des amas de DE-Cad restent peu connus.J’ai étudié le rôle de Crumbs et Baz dans la régulation de la distribution fine de DE-Cad. J’ai montré que Crb contrôle la distribution macroscopique de DE-Cad, au moins, partiellement via Baz. En générant des mutations de Baz sur des sites régulateurs variés grâce à de la transgenèse spécifique de site et en utilisant de la microscopie en temps réel quantitative, j’ai montré que Crb agit via le domaine d’oligomérisation CR1 et le site Ser980 de Baz afin d’ajuster les niveaux de DE-Cad. Remarquablement, j’ai aussi révélé que le domaine d’oligomérisation de Baz est inutile à la formation d’amas Baz-DE-Cad et j’ai caractérisé la réciprocité de l’interaction DE-Cad-Baz. / Epithelia are sheets of adherent cells that serve as barriers between distinct morphological compartments and provide directed transport of molecules.. The cooperative action of several polarity determinants governs the proper identity and morphogenesis of these domains: 1) actomyosin cytoskeleton; 2) E-Cadherin-based adherens junctions (AJs) and 3) evolutionarily conserved polarity complexes.A loss of DE-cadherin (DE-Cad) adhesion leads to apico-basal polarity defects, while the apical localization of DE-Cad requires the polarity proteins Crumbs (Crb) and Bazooka (Baz) (Par3 homolog in fly). Notably, DE-Cad builds clusters that display a certain degree of colocalization with the clusters of Baz, provide intercellular adhesion and transmit tension.I have addressed the role of Crumbs and Baz in the regulation of DE-Cad fine distribution. I demonstrated that Crb controls DE-cad macroscopic distribution, at least, partially via Baz. By generating Baz mutants on various regulatory sites using site-specific transgenesis and quantitative live-imaging microscopy, I showed that Crb acts via CR1 oligomerization domain and Ser980 site of Baz to adjust DE-Cad levels. I also revealed that Baz oligomerization domain is dispensable for Baz-DE-Cad clusters formation and characterized the reciprocity of DE-Cad-Baz crosstalk.
5

big bang, a novel regulator of tissue growth in Drosophila melanogaster

Tsoumpekos, Georgios 07 April 2016 (has links) (PDF)
Multicellular organisms need to control their size throughout development and adult life in the face of challenges such as rapid growth. Unraveling the mechanisms that regulate tissue growth in epithelial tissues, in order to generate organs of correct size and proportion, remains a crucial goal of developmental biology. A suitable epithelial tissue for studying tissue growth in Drosophila, is the proliferative monolayer epithelial sheet of imaginal wing discs, which gives rise to the adult wing. The Hippo signaling pathway regulates tissue growth in wing development. There are several observations that link tissue growth/Hippo signaling with cell polarity and the actin cytoskeletal organization. The aim of this thesis was the study of the interplay between cell polarity, cytoskeletal organization and tissue growth. To gain further insight into how apical polarity proteins regulate tissue growth, an enhancer/suppressor screen that was previously conducted in our lab by Linda Nemetschke, was used. The screen was based on the modification of a dominant smaller wing phenotype induced upon overexpression of CrbextraTM-GFP. One of the enhancers identified in this screen is a gene called big bang (bbg). The absence of bbg results in smaller wings with a slower cell cycle and increased apoptosis in wing discs. bbg encodes a protein expressed in the apical cortex in wing disc cells and is required for the proper localization of apical proteins, like Crb, in wing disc epithelia. Bbg is also in the same complex with Spaghetti Squash (Sqh) in the apical cortex of the wing disc epithelia. sqh encodes an actin-binding protein that has actin cross-linking and contractile properties. Bbg stabilizes Sqh in the apical compartment of the cell. It is reported that both Crb and Sqh regulate tissue growth through the Hippo signaling pathway. In conclusion, Bbg regulates wing tissue growth, acting as a scaffolding molecule, through the proper localization of apical components of the cells like Crb and the cytoskeletal component Sqh.
6

A FRAP Assay to determine the influence of Crumbs in membrane protein dynamics

Bronze Firmino, João Pedro 11 September 2012 (has links) (PDF)
Apicobasal polarity is essential for epithelia formation and maintenance. Cell junctions, namely the zonula adherens in Drosophila melanogaster, are the morphological landmarks that define and distinguish the apical from the basal surface. This resulting compartmentalisation is key for the cell and consequently the epithelia. To maintain proper junctions, cells make use of several protein complexes and their interactions. Among these complexes, the Crumbs (Crb) network stands out. Mutations in Crumbs (crb11A22) lead to zonula adherens collapse, consequent loss of apical surface and disaggregation of the epithelia. However, the mechanisms behind this are not known and havenʼt been addressed using modern techniques such as live imaging. Several things came out of the dataset obtained from the FRAP experiments. Firstly, protein kinetics are better described when a double exponential fit curve is used, which raises the possibility that two cell processes might be involved in the recovery observed for the different markers. Another finding was the fact that the kinetics of some polarised protein markers is not the same in every region of the embryo. Distinct areas of the embryo with different morphogenetic activity levels show different kinetics for the same compartment marker. That was the case with SpiderGFP (whole plasma membrane marker) and SASVenus (apical plasma membrane marker) where τ2 was lower in the posterior region of the embryo which is characterised by intense cell movements resulting from convergence extension. DE-CadGFP (zonula adherens marker) and lacGFP (basolateral marker) behaved similarly in the whole embryo. This indicates that convergence extension shows different trafficking needs for the apical surface. In crb11A22, SpiderGFP kinetic spatial differences were not observed. τ2 in the anterior (low level of morphogenesis) is affected and similar to wild type τ2 levels in the posterior. This could pinpoint the fact that the epithelia disaggregation is a result of trafficking failure of apical components. Live imaging of DE-CadGFP in crb11A22 background revealed initial disaggregation in the anterior part of the embryo, which strengthens the idea that Crb is required for adherens junction stabilisation and maintenance.
7

The role of auxilin and endocytosis in delta signaling

Banks, Susan Marie-Louise 02 July 2012 (has links)
Notch signaling is important for cell-cell signaling during development. Notch signaling is highly conserved across all metazoans and failure in Notch signaling is causative in many human diseases. In the Drosophila eye, activation of the Notch pathway requires Lqf (Drosophila Epsin)-dependent and Clathrin-dependent internalization of the Notch receptor ligands, Delta or Serrate, by the signal-sending cells. However, it is unclear why ligand must be internalized into the signal-sending cells to activate Notch signaling in the signal-receiving cells. Evidence suggests that in addition to Clathrin and Epsin, Auxilin is essential for signaling and is indirectly required for internalization of the Notch receptor ligand Delta. Auxilin functions in uncoating Clathrin-coated vesicles to maintain a pool of free Clathrin and Epsin in the cell. auxilin mutants were used as an entryway to identify previously unknown components of the Notch signaling pathway. An F1, FLP/FRT, EMS screen was performed and enhancers of an auxilin mutant rough eye defect were isolated. The enhancers ultimately formed one complementation group on the 2nd chromosome and fourteen complementation groups on the 3rd chromosome. Three of the 3rd chromosome complementation groups were each identified as Delta, lqf, or hsc70. A single allele was identified as faf. Delta and Epsin have known roles in signaling cells to activate Notch as described above. Hsc70 is an ATPase that functions with Auxilin to uncoat Clathrin-coated vesicles and Faf is a deubiquitinating enzyme that maintains levels of active Epsin in the cell. These results suggest I have isolated mutations in genes closely tied to Notch signaling or functioning directly with Auxilin. Mutations in two genes previously undescribed in Notch signaling in the developing Drosophila eye were also isolated from the screen and identified. The second chromosome complementation group was identified as α-adaptin. α-Adaptin is a subunit of the heterotetrameric Clathrin adaptor protein AP-2. One of the third chromosome complementation groups was identified as crumbs. Crumbs is an integral membrane protein that functions at adherens junctions and in establishing apical/basal polarity in cells. Characterizing roles for α-Adaptin and Crumbs during Notch signaling may elucidate the purpose for Delta internalization to activate Notch signaling. / text
8

Infrared-assisted Microwave Drying In The Production Of Bread Crumbs

Tireki, Suzan 01 January 2005 (has links) (PDF)
This study is aimed to investigate the possibility of using halogen lamp-microwave combination oven for production of bread crumbs and to determine the drying conditions in this oven to produce bread crumbs with the highest quality. Bread crumb dough was dried from about 40.9% to 8% moisture content by conventional oven, microwave, infrared and infrared-assisted microwave drying. In the experiments 30%, 50% and 70% halogen lamp and/or microwave powers were used. As a control, conventional oven drying at 75&deg / C was used. Conventional drying time was reduced significantly with the usage of infrared, microwave and infrared-assisted microwave drying. Percent reduction in the drying time was found as 96.5-98.6% for microwave, 80.2-94.0% for infrared and 96.8-98.6% for infrared-assisted microwave drying. Contribution of microwave drying was about nine fold of that of infrared drying in infrared-assisted microwave drying. In conventional drying moisture content decayed exponentionally with time whereas in microwave drying it showed a linear decrease. Infrared and infrared-assisted microwave drying fitted the same non-linear model. Total color change values were lower in microwave and higher in infrared drying with respect to the conventional drying. When drying was done by infrared-assisted microwave drying similar color values with the conventionally dried bread crumbs were encountered. Microwave, infrared and infrared-assisted microwave drying methods were effective in increasing water binding capacity. As long as time and energy reduction and high quality were considered, the optimum condition in infrared-assisted microwave drying for production of bread crumbs can be selected as 50% microwave and 30% halogen lamp power.
9

Migalhas versus abundância de pão: por um lugar à mesa: uma interpretação feminista de Mt 15,21-28

Katia Rejane Sassi 12 March 2014 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / A presente dissertação propõe uma interpretação feminista de Mt 15,21-28. Investiga como é apresentada a personagem feminina da cananeia na história interpretativa cristã, na comunidade mateana do primeiro século e nos dias atuais. Na perspectiva das migalhas que caem da mesa em confronto com o pão em abundância, objetiva analisar criticamente os mecanismos de dominação inscritos no texto e no processo hermenêutico, reconstruindo o mesmo para que seja Boa Nova de libertação e humanização aos homens e mulheres de todos os tempos. O primeiro capítulo apresenta uma visão panorâmica da recepção e da interpretação deste texto bíblico ao longo da história do cristianismo. Analisa sermões e comentários dos períodos patrístico e medieval, das eras moderna e pós-moderna sobre a cananeia, principalmente o conteúdo central da pregação e a visão da mulher. Procura reconstruir o caminho percorrido pelo texto, descortinando visões e ideologias que marcaram a leitura androcêntrica dos diferentes intérpretes em diferentes épocas e lugares. O segundo capítulo elabora uma análise exegética, seguindo alguns passos metodológicos que ajudam na compreensão do texto. Procura reunir o máximo de informações, a partir da análise textual, literária, histórica e teológica da perícope, descobrindo o sentido e a mensagem de vida para as comunidades mateanas do primeiro século. O terceiro capítulo versa sobre um lugar à mesa, refletindo e atualizando o texto para o nosso contexto, numa perspectiva feminista. Explora o aspecto do encontro fronteiriço, entre Jesus e a mulher, como lugar de diálogo, de rompimento de barreiras, de criação de novas relações e de mudança de lógica. Resgata o paradigma da cananeia como modelo de libertação, de empoderamento e de fé. Sinaliza para a mesa compartilhada como inspiração e desafio para a ekklesia de Mateus e das comunidades eclesiais de hoje, bem como para a vida das cananeias do século XXI. / This thesis proposes a feminist interpretation of Mt 15: 21-28. It investigates how the feminine character of the Canaanite woman is presented in the Christian interpretive history, in the Matthean community of the first century and in current days. From the perspective of the crumbs which fall from the table in confrontation with the bread in abundance, it aims to critically analyze the mechanisms of domination registered in the text and in the hermeneutic process, reconstructing it so that it can be the Good News of liberation and humanization for the men and women of all times. The first chapter presents a panoramic view of the reception and of the interpretation of this biblical text throughout the history of Christianity. It analyzes sermons and commentaries from the patristic and medieval periods, from the modern and post modern times,about the Canaanite woman, focusing mainly on the central content of the preaching and the womans perspective. It seeks to reconstruct the path traced out by the text, revealing visions and ideologies which marked the androcentric reading of the different interpreters in different times and places. The second chapter elaborates an exegetical analysis, following some methodological steps which help in understanding the text. It seeks to gather a maximum amount of information based on the textual, literary, historical and theological analysis of the pericope, discovering the meaning and the message of life for the Matthean communities of the first century. The third chapter talks about a place at the table, reflecting and updating the text to our context in a feminist perspective. It explores the aspect of the border encounter, between Jesus and the woman, as a place of dialogue, of breaking barriers, of creating new relations and of a change in logic. It recovers the paradigm of the Canaanite as a model of liberation, of empowerment and of faith. It signals to a shared table as an inspiration and a challenge for the ekklesiaof Matthew and of the ecclesial communities of today, as well as for the life of the Canaanites of the XXI century.
10

Regulation of apical basal polarity and mesoderm invagination by the E3 ubiquitin ligase Neuralized in Drosophila / Régulation de la polarité apico basale et de l'invagination du mésoderme par l'E3 ubiquitine ligase neuralized chez la Drosophile

Perez Mockus, Dago Jose Gantas 27 September 2016 (has links)
Les cellules épithéliales fournissent différentes fonctions biologiques: elles servent de barrière entre l'extérieur et l'intérieur d'un organisme et forment un continuum mécanique à travers les jonctions adhérentes qui les connectent. Au cours du développement, elles subissent des modifications extrêmes pour former l'embryon: elles changent de forme, modifient leur position relative ou perdent leur intégrité épithéliale. La plus part de ces changement se basent sur la modulation de l'actomyosine corticale et jonctionale, et sur la modulation des protéines qui définissent et maintiennent la polarité apico basale. Neuralized (Neur) est une E3 ubiquitine ligase qui est conservée des nématodes jusqu'aux mammifères. Elle a été découverte pour son rôle dans la régulation de la signalisation Delta/Nocth. Dans ce travail on décrit deux autres functions Notch-indépendantes de Neur dans le remodelage des épithéliums. En premier temps, on montre que Neur régule négativement la protéine apicale Crumbs à travers une isoforme de Stardust, ce qui permet le remodelage de l'intestin postérieur de la Drosophile et favorise la migration trans-epithéliale des cellules germinales primordiales. Puis, on présente que, pendant la gastrulation, Neur module la contractilité de l'actomyosine dans le mésoderme, et indirectement dans l'ectoderme, pour contrôler la formation du sillon ventral. / Epithelial cells serve many biological functions: they act as a barrier to separate the interior from the exterior, and form a mechanical continuum through the junctions that interconnect them. During development, they undergo dramatic changes to shape the embryo: they change their shape, modify their relative position or lose their epithelial integrity. Most of these changes rely on the modulation of cortical and junctional actomyosin, and the regulation of the proteins that define and maintain the epithelial apical/basal polarity. Neuralized (Neur) is an E3 ubiquitin ligase conserved from nematodes to mammals. It was first discovered for its role in the regulation of Delta/Notch signalling. Here we describe two Notch independent roles of Neur in epithelial remodelling. First, we show that Neur negatively regulates the apical protein Crumbs though a specific isoform of Stardust. This allows the remodelling of the drosophila posterior midgut and favours the trans-epithelial migration of the primordial germ cells. Finally, we present that Neur modulates actomyosin contractility in the mesoderm, and indirectly in the ectoderm, to control ventral furrow formation during gastrulation.

Page generated in 0.0218 seconds