• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of auxilin and endocytosis in delta signaling

Banks, Susan Marie-Louise 02 July 2012 (has links)
Notch signaling is important for cell-cell signaling during development. Notch signaling is highly conserved across all metazoans and failure in Notch signaling is causative in many human diseases. In the Drosophila eye, activation of the Notch pathway requires Lqf (Drosophila Epsin)-dependent and Clathrin-dependent internalization of the Notch receptor ligands, Delta or Serrate, by the signal-sending cells. However, it is unclear why ligand must be internalized into the signal-sending cells to activate Notch signaling in the signal-receiving cells. Evidence suggests that in addition to Clathrin and Epsin, Auxilin is essential for signaling and is indirectly required for internalization of the Notch receptor ligand Delta. Auxilin functions in uncoating Clathrin-coated vesicles to maintain a pool of free Clathrin and Epsin in the cell. auxilin mutants were used as an entryway to identify previously unknown components of the Notch signaling pathway. An F1, FLP/FRT, EMS screen was performed and enhancers of an auxilin mutant rough eye defect were isolated. The enhancers ultimately formed one complementation group on the 2nd chromosome and fourteen complementation groups on the 3rd chromosome. Three of the 3rd chromosome complementation groups were each identified as Delta, lqf, or hsc70. A single allele was identified as faf. Delta and Epsin have known roles in signaling cells to activate Notch as described above. Hsc70 is an ATPase that functions with Auxilin to uncoat Clathrin-coated vesicles and Faf is a deubiquitinating enzyme that maintains levels of active Epsin in the cell. These results suggest I have isolated mutations in genes closely tied to Notch signaling or functioning directly with Auxilin. Mutations in two genes previously undescribed in Notch signaling in the developing Drosophila eye were also isolated from the screen and identified. The second chromosome complementation group was identified as α-adaptin. α-Adaptin is a subunit of the heterotetrameric Clathrin adaptor protein AP-2. One of the third chromosome complementation groups was identified as crumbs. Crumbs is an integral membrane protein that functions at adherens junctions and in establishing apical/basal polarity in cells. Characterizing roles for α-Adaptin and Crumbs during Notch signaling may elucidate the purpose for Delta internalization to activate Notch signaling. / text

Page generated in 0.0351 seconds