• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 17
  • 8
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 217
  • 62
  • 55
  • 55
  • 22
  • 22
  • 21
  • 21
  • 19
  • 18
  • 17
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Directional Actuation Induced by Interactive Buckling in Slender Structures with Imperfections

Maria Joseph, Amal Jerald Joseph 28 August 2019 (has links)
No description available.
32

The Design and Fabrication of an Electrostatically Actuated Diaphragm with a Silicon-on-Insulator Wafer

Brooks, Elizabeth L 01 August 2013 (has links) (PDF)
Electrostatically actuated silicon membranes were designed, modeled, fabricated, and characterized. The intended application was for use in a microspeaker. Fabrication issues necessitated the use of thick diaphragms with a large gap between the electrodes. The devices did not function as speakers but did show actuation with a high DC voltage. Device dimensions were chosen by examining membrane mechanics, testing the processing steps required for device fabrication, and modeling with COMSOL. Several adhesives were researched to fabricate the device sidewalls, including BCB, PMMA, and TRA-Bond F112. A method for patterning PMMA through photolithography was found using a scanning electron microscope. Masks were designed in AutoCAD to create the electrostatically actuated devices and a microfabrication process was developed to produce diaphragms that could be characterized. Twenty micron thick diaphragms were fabricated by etching an SOI wafer in 25% TMAH and the etch depth was measured with a profilometer. Glass slides were coated with gold and patterned with positive photoresist to create counter-electrodes. The diaphragms were bonded to the glass slides using a forty micron thick layer of patterned SU-8 as sidewalls. Bonding was successful in the initial fabrication testing but not successful for the final devices. The final fabrication run resulted in eight devices that were partially bonded. Three devices were chosen to test the membrane actuation and the data analyzed for statistical significance. A DC voltage was applied to the electrodes with a MEMS driver and the change in force measured with a micro-force displacement system. Data analysis showed device actuation at high voltages (300V) for the medium and large devices.
33

Active, Regenerative Control of Civil Structures

Scruggs, Jeffrey 04 August 1999 (has links)
An analysis is presented on the use of a proof-mass actuator as a regenerative force actuator for the mitigation of earthquake disturbances in civil structures. A proof-mass actuator is a machine which accelerates a mass along a linear path. Such actuators can facilitate two-way power flow. In regenerative force actuation, a bi- directional power-electronic drive is used to facilitate power flow both to and from the proof-mass actuator power supply. With proper control system design, this makes it possible to suppress a disturbance on a structure using mostly energy extracted from the disturbance itself, rather than from an external power source. In this study, three main objectives are accomplished. First, a new performance measure, called the "required energy capacity," is proposed as an assessment of the minimum size of the electric power supply necessary to facilitate the power flow required of the closed-loop system for a given disturbance. The relationship between the required energy capacity and the linear control system design, which is based on positive position feedback concepts, is developed. The dependency of the required energy capacity on hybrid realizations of the control law are discussed, and hybrid designs are found which minimize this quantity for specific disturbance characteristics. As the second objective, system identification and robust estimation methods are used to develop a stochastic approach to the performance assessment of structural control systems, which evaluates the average worst-case performance for all earthquakes "similar" to an actual data record. This technique is used to evaluate the required energy capacity for a control system design. In the third objective, a way is found to design a battery capacity which takes into account the velocity rating of the proof-mass actuator. Upon sizing this battery, two nonlinear controllers are proposed which automatically regulate the power flow in the closed-loop system to accommodate a power supply with a finite energy capacity, regardless of the disturbance size. Both controllers are based on a linear control system design. One includes a nonlinearity which limits power flow out of the battery supply. The other includes a nonlinearity which limits the magnitude of the proof-mass velocity. The latter of these is shown to yield superior performance. / Master of Science
34

Flow Control over a Tandem Cylinder using Plasma Actuation

Latrobe, Benjamin 01 January 2021 (has links)
Tandem cylinder flow control in the form of dielectric barrier discharge, DBD, plasma actuation on the upstream cylinder is used to control the wake and flow around the downstream cylinder. Twin spanwise-oriented plasma actuators are mounted at ± 80 degrees from the forward stagnation point of the upstream cylinder. The actuators are powered with two different AC voltage levels, low-power forcing and high-power forcing. Flow control experiments are performed at Reynolds number 4,700, and cylinder spacing range 3 > L/D > 5. Results include pressure measurements on the downstream cylinder and wake surveys using Particle Image Velocimetry, PIV. High-power forcing reduces the height between vorticity peaks behind upstream cylinder and, in the case of L=3D, restricts upstream wake from impinging on downstream cylinder.
35

MEMS Electrostatic Switching Technology for Microwave Systems

Strawser, Richard E. January 2000 (has links)
No description available.
36

Synthesis and Design of a Bimodal Rotary Series Elastic Actuator

Day, Graham Allen 29 June 2016 (has links)
A novel rotary series elastic actuator (RSEA) with a two-mode, or bimodal, elastic element was designed and tested. This device was developed to eliminate the compromise between human safety and robot performance. Rigid actuators can be dangerous to humans within a robot's workspace due to impacts or pinning scenarios. To increase safety, elastic elements can soften impacts and allow for escape should pinning occur. However, adding elasticity increases the complexity of the system, lowers the bandwidth, and can make control of the actuator more difficult. To get the best of both types of actuators, a bimodal clutch was designed to switch between rigid actuation for performance and elastic actuation for human safety. The actuator consisted of two main parts, a rigid rotary actuator using a harmonic gearhead and a drum brake designed to act as a clutch. The 200 W rotary actuator provides 54.7 Nm of torque with a maximum speed of 41.4 rpm. The measured efficiency was 0.797 due to a timing belt speed reduction that was then speed reduced with a harmonic gearhead. The clutch was a drum brake actuated with a pantograph linkage and ACME lead screw. This configuration produced 11 Nm of holding torque experimentally but was theoretically shown to produce up to 51.4 Nm with larger motors. The elastic element was designed using finite element analysis (FEA) and tested experimentally to find a measured stiffness of 290 Nm/rad. / Master of Science
37

Designing and Fabricating MEMS Cantilever Switches

El-Helw, Sarah Reda 23 September 2016 (has links)
In this thesis, MEMS switches actuated using electrostatic actuation is explored. MEMS switches that are lateral switches and clamped-clamped switches are designed, fabricated, and tested in this thesis. This thesis extensively explains the process by which the MEMS Switches were designed and fabricated. In addition, it explains the changes in the switches when issues called for a modification to devices. Contact resistances were extensively studied, in this thesis. There has been a trade-off between the reliability of switches and their contact resistances. Many actions were taken to mitigate this trade-off and to allow both reliable devices with low contact resistances. The efforts to do so ranged from thermal oxidation to reduce the scalloping on the sidewalls, to modifying the dry etching recipe, to modifying the sputtering recipe, to electroplating, and many more. However, reliability of the MEMS Lateral switches was accomplished independent to the contact resistances. In addition, low contact resistances were accomplished independent to reliability. A novel approach to designing clamped-clamped MEMS switches is also showcased in this thesis. These devices experienced unique challenges compared to those faced with lateral switches. Both lateral and clamped-clamped switches are discussed in-depth in this thesis. / Master of Science
38

Modular Modification of a Buoyant AUV for Low-Speed Operation

Nickell, Christopher Lee 23 September 2005 (has links)
Conventional streamlined autonomous underwater vehicles (AUVs) with a single thruster and stern planes are typically trimmed to be somewhat buoyant or heavy in water. To maintain depth, they must generate a constant hydrodynamic force which requires that they swim at a constant pitch angle. Although tail fins are the typical mechanism for generating this control moment, they become ineffective at low speeds. To enable an existing AUV to travel at lower speeds, one may easily incorporate a modular moving mass actuator. In some cases, it may also be advantageous to include a fixed wing. The equations of motion and equilibrium conditions to regulate depth are derived, and the effectiveness and low-speed efficiency of a fixed wing is evaluated. The effect of the vertical offset of the moving mass is analyzed to establish the relation between the control angle and the moving mass linear position. A description of the design of a one degree of freedom moving mass actuator module and preliminary experiments using the Virginia Tech Miniature AUV is provided. Data is presented for a series of fixed MMA position experiments as well as a dynamic position test. The results illustrate the effectiveness of a moving mass actuator at generating low-speed control moments. With the collected data, parameter identification is performed to get an estimate of the hydrodynamic parameters. / Master of Science
39

Modélisation, caractérisation et commande d'un système microrobotique magnétique à l'interface air/liquide / Modeling, characterization and control of a magnetic microrobotic system at the air/liquid interface

Dkhil, Mohamed 04 April 2016 (has links)
Les systèmes d’actionnement à distance pour la manipulation d’objets de taille micrométrique ont connu un développement sans précédent ces dernières années dans les laboratoires de recherche. Ils permettent de contrôler à distance le déplacement et l’orientation d’objets en appliquant des champs de force à distance. Ils sont donc spécialement adaptés pour agir dans des milieux confinés pour lesquels les problèmes d’accessibilité empêchent l’utilisation de manipulateurs robotisés classiques. De plus la faible inertie de ces systèmes permet d’atteindre des cadences de manipulation importantes. Parmi les effets physiques exploitables pour actionner ces systèmes une attention particulière est portée sur les effets magnétiques, en raison des niveaux de forces élevés atteignables. L’état de l’art montre un nombre de travaux importants dans le domaine de l’actionnement magnétique en environnement liquide. Cependant les vitesses atteignables sont limitées par les frottements visqueux. Quelques études font état de l’utilisation de l’actionnement magnétique en milieu ambiant, mais les forces d’adhésion entre le substrat et la particule rend le système peu répétable. Cette thèse propose une approche originale alliant faibles frottements visqueux et grande répétabilité en considérant un milieu de travail peu étudié : l’interface air/liquide. Cette thèse s’intéresse plus particulièrement à la modélisation, la caractérisation, l’analyse des performances et la commande d’un système d’actionnement magnétique à l’interface air/liquide pour des applications à l’échelle micrométrique. / In recent years research laboratories have shown an increasing interest for non-contact actuation systems at micrometer scale. These systems control both the displacement and the orientation of the objects using remote force fields. They are of major interest in confined spaces in which traditional approaches based on robotic grippers are not suitable. In addition high manipulation throughputs can be reached due to the low inertia of these systems. Several physical principles can be considered as the actuation source. Among them a special attention is given to magnetic forces due to the high forces that can be applied to the objects. A large amount of work has been carried out on magnetic actuation systems for manipulation in liquid environments. However velocities are limited by viscous effects. A few studies are reported on magnetic systems in ambient environments. However repeatability is decreased by adhesion forces between the substrate and the objects. This work proposes an original approach with a good trade off between low viscous effects and high repeatability based on the use of a specific environment: the air/liquid interface. This thesis presents the modelling, the characterization, the performance analysis and the control of a magnetic actuation system at the air/liquid interface for applications at the micrometer scale.
40

Rear Axle Gear Whine Noise Abatement via Active Vibration Control of the Rear Subframe

Deng, Jie January 2015 (has links)
No description available.

Page generated in 0.1216 seconds