• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 10
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical modelling of full scale tidal turbines using the actuator disc approach

Abdul Rahman, Anas January 2018 (has links)
In recent years, the actuator disc approach which employs the Reynolds-Averaged Navier-Stokes (RANS) solvers has been extensively applied in wind and tidal energy field to estimate the wake of a horizontal axis turbine. This method is simpler to administer and requires moderate computational resources in modelling a tidal turbines rotor. Nonetheless, the use of actuator disc approximation in predicting the performance of tidal devices has been limited to studies involving an extremely small disc (e.g. rotor diameter of 0.1 meter). The drawback of a small scale actuator disc model is the overestimation of essential parameters such as the mesh density and the resolution of the vertical layers, making them impractical to be replicated in a regional scale model. Hence, this study aims to explore the methodology on implementation of the Three- Dimensional (3D) actuator disc-RANS model in an ocean scale simulation. Additionally, this study also aspires to examine the sensitivity of the applied momentum source term and its validity in representing full-size tidal devices. Nonetheless, before the effectiveness of an actuator disc in a regional model can be tested, tidal flow models for the area of interest needed to be set up first. This was essential for two reasons: (a) to ensure accurate hydrodynamic flow conditions at the deployment site were replicated, (b) to give confidence in the outputs produced by the regional scale actuator disc simulations, since in-situ turbine measurement data from a real deployment site were difficult to source. This research was undertaken in two stages; in the first stage, a numerical model which can simulate the tidal flow conditions of the deployment sites was constructed, and, in the second stage, the actuator disc method which is capable of modelling an array of real scale-sized tidal turbines rotors has been implemented. In the first stage, tidal flow simulations of the Pentland Firth and Orkney Waters (PFOW) were conducted using two distinct open-source software - Telemac3D, which is a finite element based numerical model, and Delft3D, which is a finite difference based model. Detailed methodologies in developing a 3D tidal flow model for the PFOW using both numerical models were presented, where their functionality, as well as limitations were explored. In the calibration and validation processes, both models demonstrated excellent comparison against the measured data. However, Telemac3D was selected for further modelling of the actuator disc considering the model's capability to perform parallel computing, together with its flexibility to combine both structured and unstructured mesh. In the second stage, to examine the actuator disc's accuracy in modelling a full size tidal device, the momentum source term was initially applied in an idealised channel study, where the presence of a 20-meter diameter turbine was simulated for both single and array configurations. The following parameters were investigated: (i) size of the unstructured mesh utilised in the computational domain, (ii) variation in disc's thickness, (iii) resolution of the imposed structured grid to represent turbine's enclosure, (iv) variation in the vertical layers, and (v) influence of hydrostatic and non-hydrostatic formulations on the models' outputs. It is to be noted that the turbine's support structures have not been included in the modelling. The predicted velocities and computed turbulence intensities from the models were compared against laboratory measurement data sourced from literature, where excellent agreement between the model outputs and the data from literature was observed. In essence, these studies highlighted the efficiency and robustness of the applied momentum source term in replicating the wake profiles and turbulence characteristics downstream of the disc, hence providing credence in implementing the actuator disc method for a regional scale application. Subsequently, the validated actuator disc method was applied to the Inner Sound region of the Pentland Firth to simulate arrays of up to 32 tidal turbine rotors. The wake development, flow interactions with the rotor arrays, and flow recovery at the Inner Sound region have been successfully mapped. Also, this study highlighted the importance of employing optimal numerical margins, specifically for the structured grid and horizontal planes, as both parameters were relevant in defining the disc's swept area. As published materials on the implementation of actuator disc approach within a regional scale model is still scarce, it was aspired that this work could provide some evidence, guidance and examples of suggested best practice in effort to fill the research gap in modelling tidal turbine arrays using the actuator disc approach.
2

Numerical computations of wind turbine wakes

Ivanell, Stefan S. A. January 2009 (has links)
Numerical simulations of the Navier-Stokes equations are performed to achieve a better understanding of the behaviour of wakes generated by wind turbines. The simulations are performed by combining the in-house developed computer code EllipSys3D with the actuator line and disc methodologies. In the actuator line and disc methods the blades are represented by a line or a disc on which body forces representing the loading are introduced. The body forces are determined by computing local angles of attack and using tabulated aerofoil coefficients. The advantage of using the actuator disc technique is that it is not necessary to resolve blade boundary layers. Instead the computational resources are devoted to simulating the dynamics of the flow structures. In the present study both the actuator line and disc methods are used. Between approximately six to fourteen million mesh points are used to resolve the wake structure in a range from a single turbine wake to wake interaction in a farm containing 80 turbines. These 80 turbines are however represented by 20 actuator discs due to periodicity because of numerical limitations. In step one of this project the objective was to find a numerical method suitable to study both the flow structures in the wake behind a single wind turbine and to simulate complicated interaction between a number of turbines. The study resulted in an increased comprehension of basic flow features in the wake, but more importantly in the use of a numerical method very suitable for the upcoming purpose. The second objective of the project was to study the basic mechanisms controlling the length of the wake to obtain better understanding of the stability properties of wakes generated by wind turbine rotors. The numerical model was based on large eddy simulations of the Navier-Stokes equations using the actuator line method to generate the wake and the tip vortices. To determine critical frequencies the flow is disturbed by inserting a harmonic perturbation. The results showed that instability is dispersive and that growth occurs only for specific frequencies and mode types. The study also provides evidence of a relationship between the turbulence intensity and the length of the wake. The relationship however needs to be calibrated with measurements. In the last project objective, full wake interaction in large wind turbine farms was studied and verified to measurements. Large eddy simulations of the Navier-Stokes equations are performed to simulate the Horns Rev off-shore wind farm 15 km outside the Danish west coast. The aim is to achieve a better understanding of the wake interaction inside the farm. The simulations are performed by using the actuator disc methodology. Approximately 13.6 million mesh points are used to resolve the wake structure in the park containing 80 turbines. Since it is not possible to simulate all turbines, the 2 central columns of turbines have been simulated with periodic boundary conditions. This corresponds to an infinitely wide farm with 10 turbines in downstream direction. Simulations were performed within plus/minus 15 degrees of the turbine alignment. The infinitely wide farm approximation is thus reasonable. The results from the CFD simulations are evaluated and the downstream evolution of the velocity field is depicted. Special interest is given to what extent production is dependent on the inflow angle and turbulence level. The study shows that the applied method captures the main production variation within the wind farm. The result further demonstrates that levels of production correlate well with measurements. However, in some cases the variation of the measurement data is caused by the different measurement conditions during different inflow angles. / QC 20100720
3

Developing boundary conditions usingthe nesting technique on simple terrain : A study of wind and turbulence intensity proles sensitivity

Desilets-Aube, Raphael January 2011 (has links)
As wind industry is developing steadily oshore, the wind turbine spacing remainsa key element for maximizing revenues and reducing loading from turbineswake interaction. In the case of relatively close to shore oshore wind farms, orlarge arrays onshore, the turbulence intensity coming from dierent sectors canhave an eect on wake growth and decay. In an attempt to obtain wind featuresat site, some boundary conditions for micro-siting simulation are found, using acommercial RANS ow solver CFD software was used. The approach in this workcould be described more practical than theoretical and could be more useful fordevelopers than pure CFD specialists.By simulating with three dierent roughness length for open sea, with theappropriate and contextual assumptions, for the oshore Lillgrund wind farm,vertical proles and turbulence intensity were extracted from the WindSim softwareat the meteorological mast position and enabled measurement comparison.In a second attempt to compare the eect of the wind and turbulence prolespreviously obtained, a sector of interest is simulated with the actuator disc model.In general, the site conditions over the large-scale domain evaluated by thecommercial software are satisfactory after adjusting the roughness length for theopen sea. The turbulence intensity trend for various in ow angle is capturedby the simulations and computed wind proles are for the most part adequately.A comparison of spring and winter ltered measurements enable discussion uponsome sectors disagreement. As for the small-scale actuator disc model using thedeveloped site conditions, the result is over-estimated by the simulations, especiallyfor the second row downstream.
4

Extended Momentum Model for Single and Multiple Hydrokinetic Turbines in Subcritical Flows

Cacciali, Luca 19 April 2023 (has links)
This thesis proposes equations extending the Free Surface Actuator Disc Theory to yield drag forces and interference factors from a series of two porous discs in open channel flows. The new model includes blockage ratio and Froude number as independent variables, which are inferred in advance to yield a single solution in the prescribed domain. The theoretical extension is integrated with the Blade Element Theory in a Double Multiple Streamtube model (DMS) to predict axial loads and the performance of confined Darrieus turbines. The turbine thrust force influences the flow approaching the rotor. Hence, a momentum method is applied to solve the hydraulic transition in the channel, achieving the unknown inflow factor from the undisturbed flow imposed downstream. The upstream blockage ratio and Froude number are thus updated iteratively to adapt the DMS to subcritical applications. The DMS is corrected further to account for the energy losses due to mechanical struts and turbine shaft, flow curvature, turbine depth, and streamtube expansion. Sub-models from the literature are partly corrected to comply with the extended actuator disc model. The turbine model is validated with experimental data of a high-solidity cross-flow hydrokinetic turbine that was previously tested at increasing rotor speeds. Turbine arrays are investigated by integrating the previous turbine model with wake sub-models to predict the plant layout maximizing the array power. An assessment of multi-row plants shows that the array power improves with closely spaced turbines. In addition, highly spaced arrays allow a partial recovery of the available power to be exploited upstream by a new turbine array. The highest array power is predicted by simulations on different array layouts considering constant array blockage ratio and rotor solidity. Finally, assuming a long ideal channel, the deviation in the inflow depth is speculated to become asymptotic after many arrays, implying almost identical power conversion upstream.
5

Análise numérica da disposição de aerogeradores próximos : estudo de caso segundo a teoria constructal

Küchle, Jefferson January 2016 (has links)
Turbinas eólicas usualmente são agrupadas em grandes parques, reduzindo o custo de instalação, transmissão da energia e manutenção periódica. A superposição das esteiras sobre turbinas adjacentes normalmente reduz consideravelmente a capacidade total, objeto de estudo de Micrositing. Porém, por vezes o “efeito Venturi” ocasionado pelas turbinas à montante induz maior velocidade às turbinas adjacentes aumentando o potencial eólico disponível nas linhas consecutivas. De forma inovadora empregar o Design Constructal de Bejan, o modelo do disco atuador genérico e a Dinâmica dos Fluidos Computacional (CFD) para obter a melhor disposição geométrica das turbinas em uma área plana e não rugosa, com foco à maior potência extraída por área de turbinas instaladas. Para tal, modelar e predizer o comportamento da esteira é fundamental, assim como conhecer os modelos de esteira e a aplicabilidade dos métodos empregados. O Design Constructal é a fonte dos parâmetros geométricos base das simulações: o espaçamento entre as turbinas e as razões de diâmetros. Após 64 simulações semi-iterativas e mais de 60 iterativas verifica-se que o maior ganho em potência disponível por área é de 7,37% para a configuração V = 7m/s, S = 3D, d/D = 0.5, L = 3D e 8,48% para a configuração V = 11m/s, S = 3D; d/D = 0.25 & 0.5, L= 0.75D, valor relativo à execução de somente um diâmetro de 100 metros. / Usually wind turbines are grouped in large parks, reducing the cost of installation, energy transmission and periodic maintenance. But the overlapping of the aerodynamical wakes on adjacent turbines reduces the total capacity, Micrositing study. However, the "Venturi effect" caused by the turbines upstream sometimes increases the speed to the adjacent turbines increasing the wind potential available in straight lines. Innovatively employing the Design Constructal Bejan, the model of the actuator disc and Computational Fluid Dynamics (CFD) to search the best geometrical layout of the turbines on a roughless and flat area, focus on higher power extracted by area. To do this, model and predict the wake of behavior is fundamental, as well as know the aerodynamical wakes models and the applicability of the methods employed. The Design Constructal is the source of the simulation’s parameters: spacing between the turbines and the diameter’s ratio. After concluded 64 semi-iterative and iterative simulations, and more than 60 verifies, the best gain in available power per area is 7.37% for the configuration V = 7 m/s; S = 3d; d/D = 0.5; L = 3D. And the gain of 8.48% for the configuration V = 11m/s, s = 3D; d/D = 0.25 & 0.50; L = 0.75D, comparing to the implementation of just 100 meters diameter.
6

Análise numérica da disposição de aerogeradores próximos : estudo de caso segundo a teoria constructal

Küchle, Jefferson January 2016 (has links)
Turbinas eólicas usualmente são agrupadas em grandes parques, reduzindo o custo de instalação, transmissão da energia e manutenção periódica. A superposição das esteiras sobre turbinas adjacentes normalmente reduz consideravelmente a capacidade total, objeto de estudo de Micrositing. Porém, por vezes o “efeito Venturi” ocasionado pelas turbinas à montante induz maior velocidade às turbinas adjacentes aumentando o potencial eólico disponível nas linhas consecutivas. De forma inovadora empregar o Design Constructal de Bejan, o modelo do disco atuador genérico e a Dinâmica dos Fluidos Computacional (CFD) para obter a melhor disposição geométrica das turbinas em uma área plana e não rugosa, com foco à maior potência extraída por área de turbinas instaladas. Para tal, modelar e predizer o comportamento da esteira é fundamental, assim como conhecer os modelos de esteira e a aplicabilidade dos métodos empregados. O Design Constructal é a fonte dos parâmetros geométricos base das simulações: o espaçamento entre as turbinas e as razões de diâmetros. Após 64 simulações semi-iterativas e mais de 60 iterativas verifica-se que o maior ganho em potência disponível por área é de 7,37% para a configuração V = 7m/s, S = 3D, d/D = 0.5, L = 3D e 8,48% para a configuração V = 11m/s, S = 3D; d/D = 0.25 & 0.5, L= 0.75D, valor relativo à execução de somente um diâmetro de 100 metros. / Usually wind turbines are grouped in large parks, reducing the cost of installation, energy transmission and periodic maintenance. But the overlapping of the aerodynamical wakes on adjacent turbines reduces the total capacity, Micrositing study. However, the "Venturi effect" caused by the turbines upstream sometimes increases the speed to the adjacent turbines increasing the wind potential available in straight lines. Innovatively employing the Design Constructal Bejan, the model of the actuator disc and Computational Fluid Dynamics (CFD) to search the best geometrical layout of the turbines on a roughless and flat area, focus on higher power extracted by area. To do this, model and predict the wake of behavior is fundamental, as well as know the aerodynamical wakes models and the applicability of the methods employed. The Design Constructal is the source of the simulation’s parameters: spacing between the turbines and the diameter’s ratio. After concluded 64 semi-iterative and iterative simulations, and more than 60 verifies, the best gain in available power per area is 7.37% for the configuration V = 7 m/s; S = 3d; d/D = 0.5; L = 3D. And the gain of 8.48% for the configuration V = 11m/s, s = 3D; d/D = 0.25 & 0.50; L = 0.75D, comparing to the implementation of just 100 meters diameter.
7

Análise numérica da disposição de aerogeradores próximos : estudo de caso segundo a teoria constructal

Küchle, Jefferson January 2016 (has links)
Turbinas eólicas usualmente são agrupadas em grandes parques, reduzindo o custo de instalação, transmissão da energia e manutenção periódica. A superposição das esteiras sobre turbinas adjacentes normalmente reduz consideravelmente a capacidade total, objeto de estudo de Micrositing. Porém, por vezes o “efeito Venturi” ocasionado pelas turbinas à montante induz maior velocidade às turbinas adjacentes aumentando o potencial eólico disponível nas linhas consecutivas. De forma inovadora empregar o Design Constructal de Bejan, o modelo do disco atuador genérico e a Dinâmica dos Fluidos Computacional (CFD) para obter a melhor disposição geométrica das turbinas em uma área plana e não rugosa, com foco à maior potência extraída por área de turbinas instaladas. Para tal, modelar e predizer o comportamento da esteira é fundamental, assim como conhecer os modelos de esteira e a aplicabilidade dos métodos empregados. O Design Constructal é a fonte dos parâmetros geométricos base das simulações: o espaçamento entre as turbinas e as razões de diâmetros. Após 64 simulações semi-iterativas e mais de 60 iterativas verifica-se que o maior ganho em potência disponível por área é de 7,37% para a configuração V = 7m/s, S = 3D, d/D = 0.5, L = 3D e 8,48% para a configuração V = 11m/s, S = 3D; d/D = 0.25 & 0.5, L= 0.75D, valor relativo à execução de somente um diâmetro de 100 metros. / Usually wind turbines are grouped in large parks, reducing the cost of installation, energy transmission and periodic maintenance. But the overlapping of the aerodynamical wakes on adjacent turbines reduces the total capacity, Micrositing study. However, the "Venturi effect" caused by the turbines upstream sometimes increases the speed to the adjacent turbines increasing the wind potential available in straight lines. Innovatively employing the Design Constructal Bejan, the model of the actuator disc and Computational Fluid Dynamics (CFD) to search the best geometrical layout of the turbines on a roughless and flat area, focus on higher power extracted by area. To do this, model and predict the wake of behavior is fundamental, as well as know the aerodynamical wakes models and the applicability of the methods employed. The Design Constructal is the source of the simulation’s parameters: spacing between the turbines and the diameter’s ratio. After concluded 64 semi-iterative and iterative simulations, and more than 60 verifies, the best gain in available power per area is 7.37% for the configuration V = 7 m/s; S = 3d; d/D = 0.5; L = 3D. And the gain of 8.48% for the configuration V = 11m/s, s = 3D; d/D = 0.25 & 0.50; L = 0.75D, comparing to the implementation of just 100 meters diameter.
8

Advanced Computational Modeling for Marine Tidal Turbine Farm

Li, Zhisong 05 October 2012 (has links)
No description available.
9

WAKE EFFECT IMPACTS ON THE ENERGY PRODUCTION OF THREE WIND TURBINES IN CLOSE CONFIGURATION

HEKİM, MEHMET ÇAĞRI January 2015 (has links)
With the rapid expansion of offshore wind power capacity in the world in the last decade, innovative offshore solutions are designed in order to meet the upcoming power capacity installations. As in all other energy sectors, offshore wind power has certain conditions that have to be met to increase the efficacy of the outcome.In this thesis, wake effect impact on the production results of Hexicon AB’s innovative floating and rotating offshore wind power platform project with 3 turbines located in the southern part of Sweden are analyzed through the application of “Analytical wake models” and the “Actuator Disc method”, with the help of WindSim.The results of Analytical models and Actuator Disc method were found to be independent of one another. Even though analytical wake models did not find any wake effect impact among the turbines, the results can be considered as logical. However, the Actuator Disc method created unexpected results which might stem from the WindSim – AD combination. It is therefore recommended to further explore these scenarios with other (more) advanced simulation tools.
10

Wind-turbine wake flows - Effects of boundary layers and periodic disturbances

Odemark, Ylva January 2014 (has links)
The increased fatigue loads and decreased power output of a wind turbine placed in the wake of another turbine is a well-known problem when building new wind-power farms and a subject of intensive research. These problems are caused by the velocity gradients and high turbulence levels present in the wake of a turbine. In order to better estimate the total power output and life time of a wind-power farm, knowledge about the development and stability of wind-turbine wakes is crucial. In the present thesis, the flow field around small-scale model wind turbines has been investigated experimentally in two wind tunnels. The flow velocity was measured with both hot-wire anemometry and particle image velocimetry. To monitor the turbine performance, the rotational frequency, the power output and the total drag force on the turbine were also measured. The power and thrust coefficients for different tip-speed ratios were calculated and compared to the blade element momentum method, with a reasonable agreement. The same method was also used to design and manufacture new turbine blades, which gave an estimate of the distribution of the lift and drag forces along the blades. The influence of the inlet conditions on the turbine and the wake properties was studied by subjecting the turbine to both uniform in flow and different types of boundary layer in flows. In order to study the stability and development of the tip vortices shed from the turbine blades, a new experimental setup for phase-locked measurements was constructed. The setup made it possible to introduce perturbations of different frequencies and amplitudes, located in the rear part of the nacelle. With a newly developed method, it was possible to characterize the vortices and follow their development downstream, using only the streamwise velocity component. Measurements were also performed on porous discs placed in different configurations. The results highlighted the importance of turbine spacings. Both the measurements on the turbine and the discs were also used to compare with large eddy simulations using the actuator disc method. The simulations managed to predict the mean velocity fairly well in both cases, while larger discrepancies were seen in the turbulence intensity. / <p>QC 20140424</p>

Page generated in 0.2914 seconds