• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 519
  • 119
  • 66
  • 61
  • 50
  • 42
  • 17
  • 15
  • 12
  • 12
  • 7
  • 6
  • 6
  • 4
  • 4
  • Tagged with
  • 1104
  • 1104
  • 591
  • 374
  • 304
  • 288
  • 238
  • 230
  • 158
  • 149
  • 138
  • 107
  • 103
  • 99
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Target-based coverage extension of 802.11 MANETs via constrained UAV mobility

Johnson, Taylor N. 11 June 2012 (has links)
MANETs are known to be useful in situations where mobile nodes need to communicate and coordinate in dynamic environments with no access to fixed network infrastructure. However, connectivity problems can occur when sub-groups within a MANET move out of communication range from one another. The increasingly prolific use of UAVs in military and civilian contexts suggests that UAVs may be very useful for facilitating connectivity between otherwise disconnected mobile nodes. Network Centric Warfare (NCW) theory makes heavy use of MANETs, and UAVs also fit well into the NCW theory; this paper describes the work involved in integrating network enabled UAVs into a previously-developed simulation of ground troop mobility called UMOMM. Specifically, we created a simple decision model for constrained, constant-radius UAV movements, and developed a target-based method by which UAVs can distribute themselves in order to improve the connectivity of the ground members of the MANET. / Graduation date: 2012
62

Intrusion detection in mobile ad hoc networks

Sun, Bo 29 August 2005 (has links)
Most existent protocols, applications and services for Mobile Ad Hoc NET-works (MANETs) assume a cooperative and friendly network environment and do not accommodate security. Therefore, Intrusion Detection Systems (IDSs), serving as the second line of defense for information systems, are indispensable for MANETs with high security requirements. Central to the research described in this dissertation is the proposed two-level nonoverlapping Zone-Based Intrusion Detection System (ZBIDS) which fit the unique requirement of MANETs. First, in the low-level of ZBIDS, I propose an intrusion detection agent model and present a Markov Chain based anomaly detection algorithm. Local and trusted communication activities such as routing table related features are periodically selected and formatted with minimum errors from raw data. A Markov Chain based normal profile is then constructed to capture the temporal dependency among network activities and accommodate the dynamic nature of raw data. A local detection model aggregating abnormal behaviors is constructed to reflect recent subject activities in order to achieve low false positive ratio and high detection ratio. A set of criteria to tune parameters is developed and the performance trade-off is discussed. Second, I present a nonoverlapping Zone-based framework to manage locally generated alerts from a wider area. An alert data model conformed to the Intrusion Detection Message Exchange Format (IDMEF) is presented to suit the needs of MANETs. Furthermore, an aggregation algorithm utilizing attribute similarity from alert messages is proposed to integrate security related information from a wider area. In this way, the gateway nodes of ZBIDS can reduce false positive ratio, improve detection ratio, and present more diagnostic information about the attack. Third, MANET IDSs need to consider mobility impact and adjust their behavior dynamically. I first demonstrate that nodes?? moving speed, a commonly used parameter in tuning IDS performance, is not an effective metric for the performance measurement of MANET IDSs. A new feature -link change rate -is then proposed as a unified metric for local MANET IDSs to adaptively select normal profiles . Different mobility models are utilized to evaluate the performance of the adaptive mechanisms.
63

Adaptive Probabilistic Routing in Wireless Ad Hoc Networks

Hasan, Affaf, Liaqat, Ismail January 2013 (has links)
The goal of this thesis work is to analyze how design elements and wireless attributes affect opportunistic routing, and in this context develop a new protocol. The algorithm developed aims to improve opportunistic elements in comparison to a well-known opportunistic protocol Simple Opportunistic Adaptive Routing (SOAR).
64

Multi-retransmission Route Discovery Schemes for Ad Hoc Wireless Network with a Realistic Physical Layer

Jin, Xiangyang 28 September 2011 (has links)
During the route discovery process, each node receiving the route request packet (RReq) will retransmit it exactly once. A distant neighbor may accidentally receive/loose the only RReq and use it to announce a new route, although that link is inferior/superior for route reply packets (RRep) or actual message routing. Overall, the constructed route may be far from the optimal. All existing route discovery schemes (including DSR/AODV) apply retransmission during route discovery exactly once (1R). Based on a realistic physical layer model, we propose two new route discovery schemes: n-retransmission (nR, retransmitting exactly n times) and n-retransmission c-reception (ncRR), retransmitting until we either reach a total of n own retransmissions or c copies from neighbors are heard. We compare our two new scheme with the traditional one, under otherwise identical conditions (same metric, same packet reception probability on each link) and the same choices about possibly retransmitting again upon discovering a better route (R+) or discarding it (R1), generating route reply packet for every received RRep (B*), or for first and better discovered routes only (B2), and retransmitting RRep exactly once (A1), up to a maximum of three times (A3), or optimally u times decided by link quality (Au). Experimental results show that the proposed ncRR scheme (for n=2 and c=3 or c=4) achieves the best tradeoff between quality of route, success rate and message overhead in the route discovery process, followed by the nR scheme, and both of them are superior to the existing traditional schemes.
65

Face Routing with Guaranteed Message Delivery in Wireless Ad-hoc Networks

Guan, Xiaoyang 01 March 2010 (has links)
Face routing is a simple method for routing in wireless ad-hoc networks. It only uses location information about nodes to do routing and it provably guarantees message delivery in static connected plane graphs. However, a static connected plane graph is often difficult to obtain in a real wireless network. This thesis extends face routing to more realistic models of wireless ad-hoc networks. We present a new version of face routing that generalizes and simplifies previous face routing protocols and develop techniques to apply face routing directly on general, non-planar network graphs. We also develop techniques for face routing to deal with changes to the graph that occur during routing. Using these techniques, we create a collection of face routing protocols for a series of increasingly more general graph models and prove the correctness of these protocols.
66

Face Routing with Guaranteed Message Delivery in Wireless Ad-hoc Networks

Guan, Xiaoyang 01 March 2010 (has links)
Face routing is a simple method for routing in wireless ad-hoc networks. It only uses location information about nodes to do routing and it provably guarantees message delivery in static connected plane graphs. However, a static connected plane graph is often difficult to obtain in a real wireless network. This thesis extends face routing to more realistic models of wireless ad-hoc networks. We present a new version of face routing that generalizes and simplifies previous face routing protocols and develop techniques to apply face routing directly on general, non-planar network graphs. We also develop techniques for face routing to deal with changes to the graph that occur during routing. Using these techniques, we create a collection of face routing protocols for a series of increasingly more general graph models and prove the correctness of these protocols.
67

Performance Study on a Dual Prohibition Multiple Access Protocol in Mobile Ad Hoc and Wireless Mesh Networks

Wu, Qian 04 October 2007 (has links)
Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2007-09-27 21:48:20.594 / Wireless networks are less reliable than wired networks because channels are “exposed” to the surrounding environment that is susceptible to interference and noise. To minimize losses of data due to collisions, wireless networks need a mechanism to regulate the access on the transmission medium. Medium Access Control (MAC) protocols control access to the shared communication medium so that it can be used efficiently. In this thesis, we first describe the collision-controlled Dual Prohibition Multiple Access (DPMA) protocol [45]. The main mechanisms implemented in DPMA, such as binary dual prohibition, power control, interference control, and support for differentiated services (DiffServ), are presented in detail. We conducted a thorough simulation study on DPMA protocol from several aspects. First, we conduct simulations to observe the effects of binary competition number (BCN), unit slot length and safe margin on the performance of DPMA. Secondly, the DiffServ capability of DPMA is demonstrated through simulation results. Finally, we compare the DPMA protocol with the CSMA/CA protocol and find that DPMA with optimal configuration has better performance than CSMA/CA under both low and high network density. / Master
68

Multi-retransmission Route Discovery Schemes for Ad Hoc Wireless Network with a Realistic Physical Layer

Jin, Xiangyang 28 September 2011 (has links)
During the route discovery process, each node receiving the route request packet (RReq) will retransmit it exactly once. A distant neighbor may accidentally receive/loose the only RReq and use it to announce a new route, although that link is inferior/superior for route reply packets (RRep) or actual message routing. Overall, the constructed route may be far from the optimal. All existing route discovery schemes (including DSR/AODV) apply retransmission during route discovery exactly once (1R). Based on a realistic physical layer model, we propose two new route discovery schemes: n-retransmission (nR, retransmitting exactly n times) and n-retransmission c-reception (ncRR), retransmitting until we either reach a total of n own retransmissions or c copies from neighbors are heard. We compare our two new scheme with the traditional one, under otherwise identical conditions (same metric, same packet reception probability on each link) and the same choices about possibly retransmitting again upon discovering a better route (R+) or discarding it (R1), generating route reply packet for every received RRep (B*), or for first and better discovered routes only (B2), and retransmitting RRep exactly once (A1), up to a maximum of three times (A3), or optimally u times decided by link quality (Au). Experimental results show that the proposed ncRR scheme (for n=2 and c=3 or c=4) achieves the best tradeoff between quality of route, success rate and message overhead in the route discovery process, followed by the nR scheme, and both of them are superior to the existing traditional schemes.
69

Deterministic knowledge about nearby nodes in a mobile one dimensional environment

Subramanian, Sivaramakrishnan 15 May 2009 (has links)
Mobile ad hoc networks consist of potentially moving, computing nodes that communicate via radio and do not have access to any fixed infrastructure. The knowl- edge about nearby nodes is a fundamental requirement and is part of many of the known solutions to problems in mobile and wireless networks including routing, broad- casting, distributed token circulation, etc. The existing solutions for this problem of knowing about neighbors are probabilistic. In this thesis, we give a first step towards a distributed, deterministic algorithm for finding out about the neighboring nodes. In particular, we focus on the problem of maintaining information about neighboring nodes in a one dimensional mobile and wireless ad hoc environment. Under some simplifying assumptions, we give an algorithm for the problem and a proof of correctness for the algorithm. We deal with efficiency in terms of both time and space. We prove a tight bound on the speed of propagation of the message when the nodes are sufficiently dense. We also consider the case when multiple clusters merge together. Our algorithm is space efficient in that the nodes do not include information about all the nodes they know in their broadcast message at all times. Nodes also store only the information about relevant nodes in their local store and purge information about nodes that have moved out of range. Our work shows that it is possible to solve the problem deterministically, and with reasonable values of the parameters, under some simplifying assumptions. Numerous interesting open questions remain in the area regarding how to relax the assumptions to make the approach more practical.
70

Investigating Interference and Power Consumption for Ad Hoc Networks

Li, Chi-Lin 04 September 2003 (has links)
IEEE 802.11 MAC protocol uses two techniques to avoid interference ¡V physical carrier sensing and RTS/CTS handshake (virtual carrier sensing). Ideally, these two techniques can solve most of interference problem. But in normal situation a host cannot receive packet successfully unless the power of receiving signal is much higher than that of interference signal. This fact leads that other host can interfere the reception in farther distance than the distance between the transmitter and the receiver. When the distance between the transmitter and the receiver is larger than certain value, some hosts that are out of the range covered by RTS/CTS packet may still interfere the receiver. This problem can be solved by using a very large physical carrier sensing range, which is limited by antenna and will reduce the network throughput. So it¡¦s not suitable to avoid large interference problem. So far some schemes were proposed to solve or improve this problem, but most of them cause power waste at the same time. In this thesis, we will propose a scheme to look after both interference and power consumption. Simulation results verify that our scheme can solve most interference caused by large interference range with less power consumption.

Page generated in 0.0413 seconds