• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 12
  • 8
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 153
  • 153
  • 153
  • 153
  • 82
  • 71
  • 66
  • 51
  • 32
  • 32
  • 29
  • 28
  • 27
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

An adaptive approach for optimized opportunistic routing over Delay Tolerant Mobile Ad hoc Networks

Zhao, Xiaogeng January 2008 (has links)
This thesis presents a framework for investigating opportunistic routing in Delay Tolerant Mobile Ad hoc Networks (DTMANETs), and introduces the concept of an Opportunistic Confidence Index (OCI). The OCI enables multiple opportunistic routing protocols to be applied as an adaptive group to improve DTMANET routing reliability, performance, and efficiency. The DTMANET is a recently acknowledged networkarchitecture, which is designed to address the challenging and marginal environments created by adaptive, mobile, and unreliable network node presence. Because of its ad hoc and autonomic nature, routing in a DTMANET is a very challenging problem. The design of routing protocols in such environments, which ensure a high percentage delivery rate (reliability), achieve a reasonable delivery time (performance), and at the same time maintain an acceptable communication overhead (efficiency), is of fundamental consequence to the usefulness of DTMANETs. In recent years, a number of investigations into DTMANET routing have been conducted, resulting in the emergence of a class of routing known as opportunistic routing protocols. Current research into opportunistic routing has exposed opportunities for positive impacts on DTMANET routing. To date, most investigations have concentrated upon one or other of the quality metrics of reliability, performance, or efficiency, while some approaches have pursued a balance of these metrics through assumptions of a high level of global knowledge and/or uniform mobile device behaviours. No prior research that we are aware of has studied the connection between multiple opportunistic elements and their influences upon one another, and none has demonstrated the possibility of modelling and using multiple different opportunistic elements as an adaptive group to aid the routing process in a DTMANET. This thesis investigates OCI opportunities and their viability through the design of an extensible simulation environment, which makes use of methods and techniques such as abstract modelling, opportunistic element simplification and isolation, random attribute generation and assignment, localized knowledge sharing, automated scenario generation, intelligent weight assignment and/or opportunistic element permutation. These methods and techniques are incorporated at both data acquisition and analysis phases. Our results show a significant improvement in all three metric categories. In one of the most applicable scenarios tested, OCI yielded a 31.05% message delivery increase (reliability improvement), 22.18% message delivery time reduction (performance improvement), and 73.64% routing depth decrement (efficiency improvement). We are able to conclude that the OCI approach is feasible across a range of scenarios, and that the use of multiple opportunistic elements to aid decision-making processes in DTMANET environments has value.
92

Indoor mobility modelling for MANETs: an activity approach

Sumbwanyambe, Mbuyu 15 March 2010 (has links)
M.Ing. / Mobile adhoc networks (MANETs) are multihop wireless topologies that have rapidly changing node structure and limited connectivity. Since MANETs are not deployed on a wide scale, the research community still depends on the simulators such as the network simulator (Ns2) to evaluate MANET protocols. The topic of how to accurately model an indoor environment in the MANET research community is explored in this dissertation. We take an empirical and simulative approach to model our mobility pattern. Our mobility model is based on activity patterns drawn from the transport science. A comparison with the random way point is made in order to understand the weighty discrepancy between the two models. Our contribution in this research is three fold: 1. We argue that mobility modelling should be based on activities other than stochastic process that have got no realistic backing; 2. We model our network using by putting up an algorithm and take an empirical approach to model the radio frequency propagation. To show the difference of the two mobility models, the behaviour of the signal strength on the two mobility models is drawn; and 3. Finally an implementation of our mobility pattern and RF measurements in ns2 is done.
93

Security protocols for mobile ad hoc networks

Davis, Carlton R. January 2006 (has links)
No description available.
94

Virtual Router Approach For Wireless Ad Hoc Networks

Ho, Ai Hua 01 January 2011 (has links)
Wireless networks have become increasingly popular in recent years. There are two variations of mobile wireless networks: infrastructure mobile networks and infrastructureless mobile networks. The latter are also known as mobile ad hoc network (MANET). MANETs have no fixed routers. Instead, mobile nodes function as relay nodes or routers, which discover and maintain communication connections between source nodes and destination nodes for various data transmission sessions. In other words, an MANET is a self-organizing multi-hop wireless network in which all nodes within a given geographical area participate in the routing and data forwarding process. Such networks are scalable and self-healing. They support mobile applications where an infrastructure is either not available (e.g., rescue operations and underground networks) or not desirable (e.g., harsh industrial environments). In many ad hoc networks such as vehicular networks, links among nodes change constantly and rapidly due to high node speed. Maintaining communication links of an established communication path that extends between source and destination nodes is a significant challenge in mobile ad hoc networks due to movement of the mobile nodes. In particular, such communication links are often broken under a high mobility environment. Communication links can also be broken by obstacles such as buildings in a street environment that block radio signal. In a street environment, obstacles and fast moving nodes result in a very short window of communication between nodes on different streets. Although a new communication route can be established when a break in the communication path occurs, repeatedly reestablishing new routes incurs delay and substantial overhead. To address this iv limitation, we introduce the Virtual Router abstraction in this dissertation. A virtual router is a dynamically-created logical router that is associated with a particular geographical area. Its routing functionality is provided by the physical nodes (i.e., mobile devices) currently within the geographical region served by the virtual router. These physical nodes take turns in forwarding data packets for the virtual router. In this environment, data packets are transmitted from a source node to a destination node over a series of virtual routers. Since virtual routers do not move, this scheme is much less susceptible to node mobility. There can be two virtual router approaches: Static Virtual Router (SVR) and Dynamic Virtual Router (DVR). In SVR, the virtual routers are predetermined and shared by all communication sessions over time. This scheme requires each mobile node to have a map of the virtual routers, and use a global positioning system (GPS) to determine if the node is within the geographical region of a given router. DVR is different from SVR with the following distinctions: (1) virtual routers are dynamically created for each communication sessions as needed, and deprecated after their use; (2) mobile nodes do not need to have a GPS; and (3) mobile nodes do not need to know whereabouts of the virtual routers. In this dissertation, we apply Virtual Router approach to address mobility challenges in routing data. We first propose a data routing protocol that uses SVR to overcome the extreme fast topology change in a street environment. We then propose a routing protocol that does not require node locations by adapting a DVR approach. We also explore how the Virtual Router Approach can reduce the overhead associated with initial route or location requests used by many existing routing protocols to find a destination. An initial request for a destination is expensive v because all the nodes need to be reached to locate the destination. We propose two broadcast protocols; one in an open terrain environment and the other in a street environment. Both broadcast protocols apply SVR. We provide simulation results to demonstrate the effectiveness of the proposed protocols in handling high mobility. They show Virtual Router approach can achieve several times better performance than traditional routing and broadcast approach based on physical routers (i.e., relay nodes)
95

Statistical broadcast protocol design for VANET

Unknown Date (has links)
This work presents the development of the Statistical Location-Assisted Broadcast (SLAB) protocol, a multi-hop wireless broadcast protocol designed for vehicular ad-hoc networking (VANET). Vehicular networking is an important emerging application of wireless communications. Data dissemination applications using VANET promote the ability for vehicles to share information with each other and the wide-area network with the goal of improving navigation, fuel consumption, public safety, and entertainment. A critical component of these data dissemination schemes is the multi-hop wireless broadcast protocol. Multi-hop broadcast protocols for these schemes must reliably deliver broadcast packets to vehicles in a geographically bounded region while consuming as little wireless bandwidth as possible. This work contains substantial research results related to development of multi-hop broadcast protocols for VANET, culminating in the design of SLAB. Many preliminary research and development efforts have been required to arrive at SLAB. First, a high-level wireless broadcast simulation tool called WiBDAT is developed. Next, a manual optimization procedure is proposed to create efficient threshold functions for statistical broadcast protocols. This procedure is then employed to design the Distribution-Adaptive Distance with Channel Quality (DADCQ) broadcast protocol, a preliminary cousin of SLAB. DADCQ is highly adaptive to node density, node spatial distribution pattern, and wireless channel quality in realistic VANET scenarios. However, the manual design process used to create DADCQ has a few deficiencies. In response to these problems, an automated design procedure is created that uses a black-box global optimization algorithm to search for efficient threshold functions that are evaluated using WiBDAT. SLAB is finally designed using this procedure. / Expansive simulation results are presented comparing the performance of SLAB to two well-published VANET broadcast protocols, p -persistence and Advanced Adaptive Gossip (AAG), and to DADCQ. The four protocols are evaluated under varying node density and speed on five different road topologies with varying wireless channel fading conditions. The results demonstrate that unlike p-persistence and AAG, SLAB performs well across a very broad range of environmental conditions. Compared to its cousin protocol DADCQ, SLAB achieves similar reachability while using around 30% less wireless bandwidth, highlighting the improvement in the automated design methodology over the manual design. / by Michael J. Slavik. / Thesis (Ph.D.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 200?. Mode of access: World Wide Web.
96

Practical privacy and security for opportunistic networks

Parris, Iain January 2014 (has links)
When in physical proximity, data can be directly exchanged between the mobile devices people carry - for example over Bluetooth. If people cooperate to store, carry and forward messages on one another's behalf, then an opportunistic network may be formed, independent of any fixed infrastructure. To enable performant routing within opportunistic networks, use of social network information has been proposed for social network routing protocols. But the decentralised and cooperative nature of the networks can however expose users of such protocols to privacy and security threats, which may in turn discourage participation in the network. In this thesis, we examine how to mitigate privacy and security threats in opportunistic networks while maintaining network performance. We first demonstrate that privacy-aware routing protocols are required in order to maintain network performance while respecting users' privacy preferences. We then demonstrate novel social network routing protocols that mitigate specific threats to privacy and security while maintaining network performance.
97

Design of a low power wireless sensor network for environmental monitoring

Spreeth, Gideon 12 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--Stellenbosch University, 2008. / A WSN (wireless sensor network) consists of a collection of small, low power electronic devices that can sense their environment and communicate with each other in order to send data to a base station for logging and monitoring. Research done on WSNs has increased rapidly over the past few years, as the necessary RF hardware has become cheaper and smaller. The wealth of information and hardware available in this field has made it possible to design and deploy networks for a multitude of monitoring purposes, on almost any terrain, without an existing telecommunication infrastructure. This thesis presents research into some major aspects of WSNs and the implementation of a test system with wireless sensor motes, that can be used for environmental monitoring, conservation purposes, impact studies, early warning systems for floods, fires etc. The system also has a wide range of possible uses in agriculture, as more data and better control over crops can increase yield. The power constraint of sensor nodes is one of the biggest concerns, as batteries can be depleted quickly and render a system useless. For this reason, work was focused on reducing power consumption of the hardware by means of various methods. Power use was also simulated very successfully, giving a accurate way of predicting node lifetime with a variety of battery types. The system was implemented on the Tmote Sky hardware platform using the open source sensor network operating system, TinyOS.
98

The development of a dynamically configured wireless ad-hoc multihop network protocol

Pretorius, Wynand 12 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2006. / An ad-hoc network encompasses the cooperative engagement of a collection of mobile nodes that are free to move and communicate with each other wirelessly without the required intervention of any centralized access point or existing infrastructure. The advantage of such a network lies in it’s robustness, adaptiveness, the fact that its self-configurable and that it becomes somewhat indestructible due to it’s decentralized nature. But such a network layout simultaneously introduces many complex network management issues which are normally taken care of inherently by a rigid network architecture. The biggest challenge faced by any such protocol is the fact that it needs to be scalable, must maintain a decent stable data throughput, all whilst performing it’s own continuous network management and associated routing algorithms. These mobile nodes need a complex, scalable, compact and essentially realtime algorithm for maintaining an up to date representation of the overall network layout, yet without clogging the system’s communications channels with too much overhead traffic, and drastically lowering the effective data throughput. Since each mobile node only has a limited communications range each node also needs very advanced routing capabilities which will allow it to track who is currently within communications range, and at the same time allow the node to create multihop paths to distant destination nodes, thus connecting nodes which cannot directly communicate. This report follows the development process of both the software needed to successfully conceptualize, simulate and test the protocol, as well as the hardware needed as proof of concept. It highlights and discusses the various design choices / considerations made in development of such a protocol, the strong- and weakpoints of the developed protocol, as well as providing several possibilities to further evolve the developed protocol.
99

Development of a Monte Carlo ad hoc routing protocol for connectivity improvement

Perold, Philippus Rudolf 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / Please refer to full text for abstract.
100

Applicability of network coding with location based addressing over a simplified VANETmodel

Hudson, Ashton January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering, 2016 / The design and implementation of network coding into a location based ad- dressing algorithm for VANET has been investigated. Theoretical analysis of the network coding algorithm has been done by using a simplified topology called the ladder topology. The theoretical models were shown to describe the way that network coding and standard location based addressing works over the VANET network. All tests were performed over simulation. Network coding was shown to improve performance by a factor of 1.5 to 2 times in both simulation and theoretical models. The theoretical models demonstrate a fundamental limit to how much network coding can improve performance by, and these were confirmed by the simulations. Network coding does have a susceptibility to interference, but the other benefits of the techniques are substantial despite this. Network coding demonstrates strong possibilities for future development for VANET protocols. The ladder topology is an important tool for future analysis. / GS

Page generated in 0.2644 seconds