• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 306
  • 34
  • 25
  • 21
  • 12
  • 12
  • 10
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 523
  • 523
  • 523
  • 241
  • 200
  • 147
  • 145
  • 116
  • 110
  • 104
  • 83
  • 70
  • 55
  • 53
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Wireless video sensor network and its applications in digital zoo

Karlsson, Johannes January 2010 (has links)
Most computing and communicating devices have been personal computers that were connected to Internet through a fixed network connection. It is believed that future communication devices will not be of this type. Instead the intelligence and communication capability will move into various objects that surround us. This is often referred to as the "Internet of Things" or "Wireless Embedded Internet". This thesis deals with video processing and communication in these types of systems. One application scenario that is dealt with in this thesis is real-time video transmission over wireless ad-hoc networks. Here a set of devices automatically form a network and start to communicate without the need for any previous infrastructure. These devices act as both hosts and routers and can build up large networks where they forward information for each other. We have identified two major problems when sending real-time video over wireless ad-hoc networks. One is the reactive design used by most ad-hoc routing protocols. When nodes move some links that are used in the communication path between the sender and the receiver may disappear. The reactive routing protocols wait until some links on the path breaks and then start to search for a new path. This will lead to long interruptions in packet delivery and does not work well for real-time video transmission. Instead we propose an approach where we identify when a route is about to break and start to search for new routes before this happen. This is called a proactive approach. Another problem is that video codecs are very sensitive for packet losses and at the same time the wireless ad-hoc network is very error prone. The most common way to handle lost packets in video codecs is to periodically insert frames that are not predictively coded. This method periodically corrects errors regardless there has been an error or not. The method we propose is to insert frames that are not predictively coded directly after a packet has been lost, and only if a packet has been lost. Another area that is dealt with in this thesis is video sensor networks. These are small devices that have communication and computational capacity, they are equipped with an image sensor so that they can capture video. Since these devices in general have very limited resources in terms of energy, computation, communication and memory they demand a lot of the video compression algorithms used. In standard video compression algorithms the complexity is high for the encoder while the decoder has low complexity and is just passively controlled by the encoder. We propose video compression algorithms for wireless video sensor networks where complexity is reduced in the encoder by moving some of the image analysis to the decoder side. We have implemented our approach on actual low-power sensor nodes to test our developed algorithms. Finally we have built a "Digital Zoo" that is a complete system including a large scale outdoor video sensor network. The goal is to use the collected data from the video sensor network to create new experiences for physical visitors in the zoo, or "cyber" visitors from home. Here several topics that relate to practical deployments of sensor networks are addressed.
412

Performance of cooperative relaying systems with co-channel interference

Yu, Hyungseok 16 July 2012 (has links)
The cooperative relaying scheme is a promising technique for increasing the capacity and reliability of wireless communication. Even though extensive research has performed in information theoretical aspect, there are still many unresolved practical problems of cooperative relaying system. This dissertation analyzes the performance of cooperative decode-and-forward (DF) relaying systems in the presence of multiple interferers and improve network throughput for these systems. We propose and summarize various systems in the view of network topology, transmission structure, and slot allocation. We present closed-form expressions for the end-to-end outage probability, average symbol-error-probability, average packet-error-probability, and network throughput of the proposed systems. This dissertation shows that the robustness of the destination against interference is more important than robustness of the relay against interference from an interference management perspective, and increasing the number of branches yields better outage and error performance improvements against shadowing than increasing the number of hops. In cellular networks, the cooperative diversity systems can outperform the dual-Rx antenna system, but only when the relay is located in a relatively small portion of the total cell area with respect the the destination mobile terminal. The results also show that since the effective regions of the uplink and the downlink do not overlap, different relays should be utilized for cell sectorization in the uplink and the downlink. Finally, the proposed variable-slot selection DF scheme can reduce the system complexity and make the maximum throughput point in the low and moderate signal-to-interference-plus-noise ratio region.
413

Transport-Layer Performance in Wireless Multi-Hop Networks

Karlsson, Jonas January 2013 (has links)
Wireless communication has seen a tremendous growth in the last decades. Continuing on this trend, wireless multi-hop networks  are nowadays used or planned for use in a multitude of contexts, spanning from Internet access at home to emergency situations. The Transmission Control Protocol (TCP) provides reliable and ordered delivery of a data and is used by major Internet applications such as web browsers, email clients and file transfer programs. TCP traffic is also the dominating traffic type on the Internet. However, TCP performs less than optimal in wireless multi-hop networks due to packet reordering, low link capacity, packet loss and variable delay. In this thesis, we develop novel proposals for enhancing the network and transport layer to improve TCP performance in wireless multi-hop networks. As initial studies, we experimentally evaluate the performance of different TCP variants, with and without mobile nodes. We further evaluate the impact of multi-path routing on TCP performance and propose packet aggregation combined with aggregation aware multi-path forwarding as a means to better utilize the available bandwidth. The last contribution is a novel extension to multi-path TCP to  enable single-homed hosts to fully utilize the network capacity. / <p>Opponent changed. Prof. C. Lindeman from the University of Leipzig was substituted by Prof. Zhang.</p>
414

Optimal distributed detection and estimation in static and mobile wireless sensor networks

Sun, Xusheng 27 June 2012 (has links)
This dissertation develops optimal algorithms for distributed detection and estimation in static and mobile sensor networks. In distributed detection or estimation scenarios in clustered wireless sensor networks, sensor motes observe their local environment, make decisions or quantize these observations into local estimates of finite length, and send/relay them to a Cluster-Head (CH). For event detection tasks that are subject to both measurement errors and communication errors, we develop an algorithm that combines a Maximum a Posteriori (MAP) approach for local and global decisions with low-complexity channel codes and processing algorithms. For event estimation tasks that are subject to measurement errors, quantization errors and communication errors, we develop an algorithm that uses dithered quantization and channel compensation to ensure that each mote's local estimate received by the CH is unbiased and then lets the CH fuse these estimates into a global one using a Best Linear Unbiased Estimator (BLUE). We then determine both the minimum energy required for the network to produce an estimate with a prescribed error variance and show how this energy must be allocated amongst the motes in the network. In mobile wireless sensor networks, the mobility model governing each node will affect the detection accuracy at the CH and the energy consumption to achieve this level of accuracy. Correlated Random Walks (CRWs) have been proposed as mobility models that accounts for time dependency, geographical restrictions and nonzero drift. Hence, the solution to the continuous-time, 1-D, finite state space CRW is provided and its statistical behavior is studied both analytically and numerically. The impact of the motion of sensor on the network's performance is also studied.
415

Design and analysis of medium access control protocols for ad hoc and cooperative wireless networks

Alonso Zárate, Jesús 25 February 2009 (has links)
La presente tesis doctoral contribuye a la incesante evolución de las comunicaciones inalámbricas. Se centra en el diseño de protocolos de acceso al medio (MAC) para redes ad hoc y redes inalámbricas cooperativas. En una primera parte introductoria se presenta un minucioso estado del arte y se establecen las bases teóricas de las contribuciones presentadas en la tesis. En esta primera parte introductoria se definen las principales motivaciones de la tesis y se plantean los objetivos. Después, las contribuciones de la tesis se organizan en dos grandes bloques, o partes. En la primera parte de esta tesis se diseña, analiza y evalúa el rendimiento de un novedoso protocolo MAC de alta eficiencia llamado DQMAN (Protocolo MAC basado en colas distribuidas para redes ad hoc). Este protocolo constituye la extensión y adaptación del protocolo DQCA, diseñado para redes centralizadas, para operar en redes sin infraestructura. En DQMAN se introduce un nuevo paradigma en el campo del acceso al medio para redes distribuidas: la integración de un algoritmo de clusterización espontáneo y dinámico basado en una estructura de master y esclavo junto con un protocolo MAC de alta eficiencia diseñado para redes centralizadas. Tanto el análisis teórico como las simulaciones por ordenador presentadas en esta tesis muestran que DQMAN mejora el rendimiento del actual estándar IEEE 802.11. La principal característica de DQMAN es que se comporta como un protocolo de acceso aleatorio cuando la carga de tráfico es baja y cambia automática y transparentemente a un protocolo de reserva a medida que el tráfico de la red aumenta. Además, su rendimiento es prácticamente independiente del número de usuarios simultáneos de la red, lo cual es algo deseable en redes que nacen para cubrir una necesidad espontánea y no pueden ser planificadas. El hecho de que algoritmo de clusterización se base en un acceso aleatorio permite la coexistencia e intercomunicación de usuarios DQMAN con usuarios basados en el estándar IEEE 802.11. Este estudio se presenta en esta primera parte de la tesis y es fundamental de cara a una posible explotación comercial de DQMAN. La metodología presentada en esta tesis mediante el cual se logra extender la operación de DQCA a entornos ad hoc sin infraestructura puede ser utilizada para adaptar cualquier otro protocolo centralizado. Con el objetivo de poner de manifiesto esta realidad, la primera parte de la tesis concluye con el diseño y evaluación de DPCF como una extensión distribuida del modo de coordinación centralizado (PCF) del estándar IEEE 802.11 para operar en redes distribuidas. La segunda parte de la tesis se centra en el estudio de un tipo específico de técnicas cooperativas: técnicas cooperativas de retransmisión automática (C-ARQ). La idea principal de las técnicas C-ARQ es que cuando un paquete de datos se recibe con bits erróneos, se solicita retransmisión, no a la fuente de datos, si no a cualquiera de los usuarios que escuchó la transmisión original. Estos usuarios se convierten en espontáneos retransmisores que permiten mejorar la eficiencia de la comunicación. A pesar de que este tipo de esquema puede obtener diversidad de cooperación, el hecho de implicar a más de un usuario en una comunicación punto a punto requiere una coordinación que hasta ahora ha sido obviada en la literatura, asumiendo que los retransmisores pueden coordinarse perfectamente para retransmitir uno detrás de otro. En esta tesis se analiza y evalúa el coste de coordinación impuesto por la capa MAC y se identifican los principales retos de diseño que las técnicas C-ARQ imponen al diseño de la capa MAC. Además, se presenta el diseño y análisis de dos novedosos protocolos MAC para C-ARQ: DQCOOP y PRCSMA. El primero se basa en DQMAN y constituye una extensión de este para operar en esquemas C-ARQ, mientras que el segundo constituye la adaptación del estándar IEEE 802.11 para poder ejecutarse en un esquema C-ARQ. El rendimiento de estos esquemas se compara en esta tesis tanto con esquemas no cooperativos como con esquemas ideales cooperativos donde se asume que el MAC es ideal. Los resultados principales muestran que el diseño eficiente de la capa MAC es esencial para obtener todos los beneficios potenciales de los esquemas cooperativos. / This thesis aims at contributing to the incessant evolution of wireless communications. The focus is on the design of medium access control (MAC) protocols for ad hoc and cooperative wireless networks. A comprehensive state of the art and a background on the topic is provided in a first preliminary part of this dissertation. The motivations and key objectives of the thesis are also presented in this part. Then, the contributions of the thesis are divided into two fundamental parts. The first part of the thesis is devoted to the design, analysis, and performance evaluation of a new high-performance MAC protocol. It is the Distributed Queueing MAC Protocol for Ad hoc Networks (DQMAN) and constitutes an extension and adaptation of the near-optimum Distributed Queueing with Collision Avoidance (DQCA) protocol, designed for infrastructure-based networks, to operate over networks without infrastructure. DQMAN introduces a new access paradigm in the context of distributed networks: the integration of a spontaneous, dynamic, and soft-binding masterslave clustering mechanism together with a high-performance infrastructure-based MAC protocol. Theoretical analysis and computer-based simulation show that DQMAN outperforms IEEE 802.11 Standard. The main characteristic of the protocol is that it behaves as a random access control protocol when the traffic load is low and it switches smoothly and automatically to a reservation protocol as the traffic load grows. In addition, its performance is almost independent of the number of users of a network. The random-access based clustering algorithm allows for the coexistence and intercommunication of stations using DQMAN with the ones just based on the legacy IEEE 802.11 Standard. This assessment is also presented in this first part of the dissertation and constitutes a key contribution in the light of the commercial application of DQMAN. Indeed, the rationale presented in this first part of the thesis to extend DQCA and become DQMAN to operate over distributed networks can be used to extend the operation of any other infrastructure-based MAC protocol to ad hoc networks. In order to exemplify this, a case study is presented to conclude the first part of the thesis. The Distributed Point Coordination Function (DPCF) MAC protocol is presented as the extension of the PCF of the IEEE 802.11 Standard to be used in ad hoc networks. The second part of the thesis turns the focus to a specific kind of cooperative communications: Cooperative Automatic Retransmission Request (C-ARQ) schemes. The main idea behind C-ARQ is that when a packet is received with errors at a receiver, a retransmission can be requested not only from the source but also to any of the users which overheard the original transmission. These users can become spontaneous helpers to assist in the failed transmission by forming a temporary ad hoc network. Although such a scheme may provide cooperative diversity gain, involving a number of users in the communication between two users entails a complicated coordination task that has a certain cost. This cost has been typically neglected in the literature, assuming that the relays can attain a perfect scheduling and transmit one after another. In this second part of the thesis, the cost of the MAC layer in C-ARQ schemes is analyzed and two novel MAC protocols for C-ARQ are designed, analyzed, and comprehensively evaluated. They are the DQCOOP and the Persistent Relay Carrier Sensing Multiple Access (PRCSMA) protocols. The former is based on DQMAN and the latter is based on the IEEE 802.11 Standard. A comparison with non-cooperative ARQ schemes (retransmissions performed only from the source) and with ideal CARQ (with perfect scheduling among the relays) is included to have actual reference benchmarks of the novel proposals. The main results show that an efficient design of the MAC protocol is crucial in order to actually obtain the benefits associated to the C-ARQ schemes.
416

MAC Protocol Design for Parallel Link Rendezvous in Ad Hoc Cognitive Radio Networks

Al-Tamimi, Majid January 2010 (has links)
The most significant challenge for next wireless generation is to work opportunistically on the spectrum without a fixed spectrum allocation. Cognitive Radio (CR) is the candidate technology to utilize spectrum white space, which requires the CR to change its operating channel as the white space moves. In a CR ad-hoc network, each node could tune to a different channel; as a result, it cannot communicate with other nodes. This different tuning is due to the difficulty of maintaining Common Control Channel (CCC) in opportunistic spectrum network, and keeping the nodes synchronized in ad-hoc network. The CR ad-hoc network requires a protocol to match tuning channels between ad-hoc nodes, namely, rendezvous channels. In this thesis, two distributed Medium Access Control (MAC) protocols are designed that provide proper rendezvous channel without CCC or synchronization. The Balanced Incomplete Block Design (BIBD) is used in both protocols to provide our protocols a method of rendezvous between CR ad-hoc nodes. In fact, the BIBD guarantees there is at least one common element between any two blocks. If the channels are assigned to the BIBD elements and the searching sequence to the BIBD block, there is a guarantee of a rendezvous at least in one channel for each searching sequence. The first protocol uses a single-BIBD sequence and a multi-channel sensing. Alternatively, the second protocol uses a multi-BIBD sequence and a single-channel sensing. The single-sequence protocol analysis is based on the discrete Markov Chain. At the same time, the sequence structure of the BIBD in a multi-sequence protocol is used to define the Maximum Time to Rendezvous (MTTR). The simulation results confirm that the protocols outperform other existing protocols with respect to Time to Rendezvous (TTR), channel utilization, and network throughput. In addition, both protocols fairly distribute the network load on channels, and share the channels fairly among network nodes. This thesis provides straight forward and efficiently distributed MAC protocols for the CR ad-hoc networks.
417

MAC Protocol Design for Parallel Link Rendezvous in Ad Hoc Cognitive Radio Networks

Al-Tamimi, Majid January 2010 (has links)
The most significant challenge for next wireless generation is to work opportunistically on the spectrum without a fixed spectrum allocation. Cognitive Radio (CR) is the candidate technology to utilize spectrum white space, which requires the CR to change its operating channel as the white space moves. In a CR ad-hoc network, each node could tune to a different channel; as a result, it cannot communicate with other nodes. This different tuning is due to the difficulty of maintaining Common Control Channel (CCC) in opportunistic spectrum network, and keeping the nodes synchronized in ad-hoc network. The CR ad-hoc network requires a protocol to match tuning channels between ad-hoc nodes, namely, rendezvous channels. In this thesis, two distributed Medium Access Control (MAC) protocols are designed that provide proper rendezvous channel without CCC or synchronization. The Balanced Incomplete Block Design (BIBD) is used in both protocols to provide our protocols a method of rendezvous between CR ad-hoc nodes. In fact, the BIBD guarantees there is at least one common element between any two blocks. If the channels are assigned to the BIBD elements and the searching sequence to the BIBD block, there is a guarantee of a rendezvous at least in one channel for each searching sequence. The first protocol uses a single-BIBD sequence and a multi-channel sensing. Alternatively, the second protocol uses a multi-BIBD sequence and a single-channel sensing. The single-sequence protocol analysis is based on the discrete Markov Chain. At the same time, the sequence structure of the BIBD in a multi-sequence protocol is used to define the Maximum Time to Rendezvous (MTTR). The simulation results confirm that the protocols outperform other existing protocols with respect to Time to Rendezvous (TTR), channel utilization, and network throughput. In addition, both protocols fairly distribute the network load on channels, and share the channels fairly among network nodes. This thesis provides straight forward and efficiently distributed MAC protocols for the CR ad-hoc networks.
418

Distributed Power Control and Medium Access Control Protocol Design for Multi-Channel Ad Hoc Wireless Networks

Almotairi, Khaled Hatem January 2012 (has links)
In the past decade, the development of wireless communication technologies has made the use of the Internet ubiquitous. With the increasing number of new inventions and applications using wireless communication, more interference is introduced among wireless devices that results in limiting the capacity of wireless networks. Many approaches have been proposed to improve the capacity. One approach is to exploit multiple channels by allowing concurrent transmissions, and therefore it can provide high capacity. Many available, license-exempt, and non-overlapping channels are the main advantages of using this approach. Another approach that increases the network capacity is to adjust the transmission power; hence, it reduces interference among devices and increases the spatial reuse. Integrating both approaches provides further capacity. However, without careful transmission power control (TPC) design, the network performance is limited. The first part of this thesis tackles the integration to efficiently use multiple channels with an effective TPC design in a distributed manner. We examine the deficiency of uncontrolled asymmetrical transmission power in multi-channel ad hoc wireless networks. To overcome this deficiency, we propose a novel distributed transmission power control protocol called the distributed power level (DPL) protocol for multi-channel ad hoc wireless networks. DPL allocates different maximum allowable power values to different channels so that the nodes that require higher transmission power are separated from interfering with the nodes that require lower transmission power. As a result, nodes select their channels based on their minimum required transmission power to reduce interference over the channels. We also introduce two TPC modes for the DPL protocol: symmetrical and asymmetrical. For the symmetrical mode, nodes transmit at the power that has been assigned to the selected channel, thereby creating symmetrical links over any channel. The asymmetrical mode, on the other hand, allows nodes to transmit at a power that can be lower than or equal to the power assigned to the selected channel. In the second part of this thesis, we propose the multi-channel MAC protocol with hopping reservation (MMAC-HR) for multi-hop ad hoc networks to overcome the multi-channel exposed terminal problem, which leads to poor channel utilization over multiple channels. The proposed protocol is distributed, does not require clock synchronization, and fully supports broadcasting information. In addition, MMAC-HR does not require nodes to monitor the control channel in order to determine whether or not data channels are idle; instead, MMAC-HR employs carrier sensing and independent slow channel hopping without exchanging information to reduce the overhead. In the last part of this thesis, a novel multi-channel MAC protocol is developed without requiring any change to the IEEE 802.11 standard known as the dynamic switching protocol (DSP) based on the parallel rendezvous approach. DSP utilizes the available channels by allowing multiple transmissions at the same time and avoids congestion because it does not need a dedicated control channel and enables nodes dynamically switch among channels. Specifically, DSP employs two half-duplex interfaces: One interface follows fast hopping and the other one follows slow hopping. The fast hopping interface is used primarily for transmission and the slow hopping interface is used generally for reception. Moreover, the slow hopping interface never deviates from its default hopping sequence to avoid the busy receiver problem. Under single-hop ad hoc environments, an analytical model is developed and validated. The maximum saturation throughput and theoretical throughput upper limit of the proposed protocol are also obtained.
419

Using Terrain and Location Information to Improve Routing in Ad Hoc Networks

Rivera, Brian 03 April 2007 (has links)
In recent years, mobile computing has become an integral part of society. As the cost of laptops and wireless networking hardware has declined, society has become increasingly connected. High speed wireless internet access is increasingly becoming part of our daily lives. As a result of this dependence on instant access to information, there is a growing need to create wireless networks without having access to a fixed networking infrastructure. Instead of relying in fixed infrastructure, these mobile nodes can be joined to create an ad hoc network to facilitate information sharing. The ad hoc nature of these networks requires different protocols than traditional networks. This research is motivated by the observation that radio communications are greatly affected by the physical environment. In hilly or urban environments, the performance of a wireless network is much lower than in large open areas. However, MANET protocols typically consider the physical environment only when it causes a change in connectivity. We examine whether the network can estimate the physical environment and predict its impact on the network, rather than waiting to react to the physical environment. This research demonstrates the feasibility of using terrain and location information to improve routing in mobile ad hoc networks through the development of a distributed routing algorithm that uses location and digital terrain information to efficiently deliver packets in a mobile ad hoc network. Through a comprehensive set of simulations, we show that the new algorithm performs better than current MANET protocols in terms of standard metrics: delay, throughput, packet loss, and efficiency.
420

Power Management in Disruption Tolerant Networks

Jun, Hyewon 14 November 2007 (has links)
Disruption Tolerant Networks (DTNs) are mobile wireless networks that are designed to work in highly-challenged environments where the density of nodes is insufficient to support direct end-to-end communication. Recent efforts in DTNs have shown that mobility provides a powerful means for delivering messages in such highly-challenging environments. Unfortunately, many mobility scenarios depend on untethered devices with limited energy supplies. Without careful management, depleted energy supplies will degrade network connectivity and counteract the robustness gained by mobility. A primary concern is the energy consumed by wireless communications because the wireless interface is one of the largest energy consumers in mobile devices whether they are actively communicating or just listening. However, mobile devices exhibit a tension between saving energy and providing connectivity through opportunistic encounters. In order to pass messages, the device must discover communication opportunities with other nodes. At the same time, energy can be conserved by ``sleeping,' i.e., turning off or disabling the wireless interfaces. However, if the wireless interface is asleep, the node cannot discover other nodes for communication. Thus, power management in DTNs must balance the discovery of other nodes while aggressively sleeping the radio during the remaining periods. In this thesis, we first develop a power management framework for a single radio architecture that allows a node to save energy while discovering communication opportunities. The framework is tailored to the available knowledge about network connectivity over time. Further, the framework supports explicit trade-offs between energy savings and connectivity, so network operators can choose, for example, to conserve energy at the cost of reduced message delivery performance. We next examine the possibility of using a hierarchical radio architecture in which nodes are equipped with two complementary radios: a long-range, high-power radio and a short-range, low-power radio. In this architecture, energy can be conserved by using the low-power radio to discover communication opportunities with other nodes and waking the high-power radio to undertake the data transmission. However, the short range of the low-power radio may result in missing communication opportunities. Thus, we develop a generalized power management framework in which both radios support the discovery. In addition, we incorporate the knowledge of traffic load and network dynamics and devise approximation algorithms to control the sleep/wake-up cycling of the radios to provide maximum energy conservation while discovering enough communication opportunities to handle the expected traffic load. Finally, we investigate the Message Ferrying (MF) routing paradigm as a means to save energy while trading off data delivery delay. In MF, special nodes called ferries move around the deployment area to deliver messages for nodes. While this routing paradigm has been developed mainly to deliver messages in partitioned networks, here we explore its use in a connected MANET. The reliance on the movement of the ferries to deliver messages increases the delivery delay if a network is not partitioned. However, delegating message delivery to the ferries provides the opportunity for nodes to save energy by aggressively putting their radios to sleep when ferries are far away. To exploit this feature, we present a power management framework, in which nodes switch their power management modes based on the knowledge of ferry location.

Page generated in 0.0675 seconds