1 |
Einstein-Maxwell-dilaton theory: Black holes, wormholes, and applications to AdS/CMT / Teoria de Einstein-Maxwell-dilaton: buracos negros, buracos de minhoca e correpondência AdS/CMTSantos, Prieslei Estefânio Dominik Goulart 21 November 2017 (has links)
Submitted by Prieslei E. D. Goulart Santos (prieslei@ift.unesp.br) on 2017-12-07T16:59:31Z
No. of bitstreams: 1
Thesis.pdf: 1801229 bytes, checksum: 71a64454056164c79eed45a9201789ac (MD5) / Submitted by Prieslei E. D. Goulart Santos (prieslei@ift.unesp.br) on 2017-12-11T18:47:11Z
No. of bitstreams: 1
Thesis.pdf: 1801229 bytes, checksum: 71a64454056164c79eed45a9201789ac (MD5) / Submitted by Prieslei E. D. Goulart Santos (prieslei@ift.unesp.br) on 2017-12-14T11:25:03Z
No. of bitstreams: 1
Thesis.pdf: 1801229 bytes, checksum: 71a64454056164c79eed45a9201789ac (MD5) / Submitted by Prieslei E. D. Goulart Santos (prieslei@ift.unesp.br) on 2017-12-14T13:50:32Z
No. of bitstreams: 1
Thesis.pdf: 1801229 bytes, checksum: 71a64454056164c79eed45a9201789ac (MD5) / Approved for entry into archive by Hellen Sayuri Sato null (hellen@ift.unesp.br) on 2017-12-15T16:09:41Z (GMT) No. of bitstreams: 1
goulartsantos_ped_dr_ift.pdf: 1801229 bytes, checksum: 71a64454056164c79eed45a9201789ac (MD5) / Made available in DSpace on 2017-12-15T16:09:41Z (GMT). No. of bitstreams: 1
goulartsantos_ped_dr_ift.pdf: 1801229 bytes, checksum: 71a64454056164c79eed45a9201789ac (MD5)
Previous issue date: 2017-11-21 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / No contexto de teorias de Einstein-Maxwell-dilaton, estudamos buracos negros, buracos de minhoca e aplicações à correspondência anti-de Sitter/Teoria de Matéria Condensada. Apresentamos a solução de buracos negro dyonica para a teoria de Einstein-Maxwell-dilaton escrita completamente em termos de constantes de integração, e então investigamos como definir parâmetros físicos dependentes e independentes. Escolhendo condições de contorno apropriadas para o dilaton no infinito, construímos buracos negros sem massa e uma ponte de Einstein-Rosen que satisfaz a condição de energia nula. Construímos uma solução carregada analítica de buraco de minhoca atravessável para a teoria de Einstein-Maxwell-phantom-dilaton que é livre de singularidades e conecta dois espaços de Minkowski. Usando o teorema de Gauss-Bonnet calculamos o ângulo de deflexão de um raio de luz que passa próximo este buraco de minhoca. Apresentamos o formalismo da função entropia de Sen e o aplicamos para o cálculo analítico da entropia do buraco negro extremo de uma teoria de supergravidade com N=8 em quatro dimensões. No contexto de holografia, calculamos coeficientes de transporte na presença de campos magnéticos para teorias com um termo topológico na ação. Definimos quantidades radialmente independentes subtraindo as correntes de magnetização, e então estudamos perturbações lineares em torno do horizonte a fim de expressar as condutividades elétrica, termoelétrica e térmica em termos de somente propriedades do horizonte. Combinamos as fórmulas para as condutividades com os dados do horizonte calculados usando o formalismo de Sen, e expressamos analiticamente as condutividades à temperatura zero para várias teorias cujas soluções de buraco negro não são conhecidas analiticamente. / In the context of Einstein-Maxwell-dilaton theory, we study black holes, wormholes and applications to the anti-de Sitter/Condensed Matter Theory correspondence. We present the dyonic black hole solution to the Einstein-Maxwell-dilaton theory written fully in terms of integration constants, and then investigate how to define dependent and independent physical parameters. Choosing appropriate boundary conditions for the dilaton at infinity, we construct massless black holes and an Einstein-Rosen bridge that satisfies the null energy condition. We construct an analytical charged traversable wormhole solution to the Einstein-Maxwell-phantom-dilaton theory which is free of singularities and connects two Minkowski spacetimes. Using the Gauss-Bonnet theorem we compute the deflection angle of a light ray passing close to this wormhole. We present the Sen's entropy function method and apply it to compute analytically the entropy of the extremal black hole of a gauged N=8 supergravity theory in four dimensions. In the holographic context, we compute the transport coefficients in the presence of magnetic fields for theories with a topological term in the action. We define radially independent quantities by subtracting off the magnetization currents, and then study linear perturbations around the horizon in order to express the electric, thermoelectric and heat conductivities in terms of horizon properties only. We combine the formulae for the conductivities with the horizon data computed using Sen's entropy function method, and express analytically the conductivities at zero temperature for several theories whose the full black hole solutions are not known analytically. / 2103/00140-7
|
2 |
Hydrodynamics in solid state transport, from microscopic to mesoscopic scalesWitkowski, Piotr 28 August 2020 (has links)
The thesis is devoted to some aspects of the solid-state electronic transport in the so-called viscous or hydrodynamic regime.
Hydrodynamic regime in this context means that due to the large carrier density and non-negligible carrier-carrier interactions, the transport properties follow from collective, rather than single-particle phenomena.
To capture the dynamics of such a system one may use description based on the conserved quantities, i.e. momentum, energy or charge.
If the interactions between the constituents of the system are strong enough, such a description is provided by the hydrodynamic equations which for conserved momentum and energy are the Navier-Stokes equations or their relativistic counterparts.
This thesis focuses on such a situation: when the equations governing transport properties follow from conservation of the momentum or, at most, can be treated as a modification of such equations due to weak momentum relaxation.
Presented here are two lines of investigation. The first one focuses on the mesoscopic effects, i.e. on the dependence of the outcome of the transport measurements on the physical parameters of the sample such as size and shape. Here also the effects of the weak momentum relaxation are studied.
In the second one, the issue of parity and time reversal symmetry breaking, occurring in a 2 dimensional system due to the presence of an external magnetic field, is investigated.
An effective model of a strongly coupled quantum system is introduced and used to compute the odd (Hall) viscosity -- a transport coefficient allowed once the discrete symmetries are broken -- as a function of magnetic field, temperature and chemical potential.
The first part of results concerns the behaviour of the electronic fluid in a typical AC measurement -- modeled by an elongated channel in which the fluid is subject to a periodically time dependent electric potential. Assuming standard, no-slip boundary conditions, the spatial distribution of the current density is found to be much different to the one known for Ohmic conduction. For small frequency the current distribution has a parabolic profile across the channel, while for high frequency the current in the bulk of the channel becomes flat (position-independent), while two maxima terminating a so-called boundary layer develop.
In these boundary layers large gradients of current can be found, contributing to high local entropy production due to the viscous force.
Despite this differences in the local current density profile, when the global conductance is measured as a function of the frequency, the result much resembles the well known Drude curve, with a distinct maximum visible in the imaginary part of the AC conductance.
There is, however, a global signature of the boundary layer formation -- the scaling of the conductance with the channel width, that changes from quadratic (for parabolic flow) to asymptotically constant (for a flow with boundary layers).
Moreover, in the hydrodynamic regime, the position of the Drude peak is not only determined by microscopic parameter but again by a combination of microscopic (viscosity) and mesoscopic (width) parameters.
Since the Drude peak occurs for experimentally feasible values of parameters, the mentioned mesoscopic dependence may be used to measure the value of viscosity coefficient.
The results discussed above are obtained assuming, as is traditional for hydrodynamics on everyday length-scales, a no-slip boundary condition which forces the fluid to be immobile at the boundary. This boundary condition was also assumed in most of the previous works on the electronic hydrodynamics.
However, this is not the only possibility. There exists a one-parameter family of consistent boundary conditions involving velocity and its derivative on the boundary, parametrized by a coefficient called the slip length. Recent theoretical and experimental publications suggest that it may be dependent on the state parameters of the system (i.e temperature, chemical potential) and its value may be relatively large for some experimental situations. One of the consequences of the slip length being large is that hydrodynamic effects are obscured in the simple AC set-up discussed before.
In this work it is shown that by an appropriate micro-structuring of the boundary, the effects of slip can be suppressed.
Once the array of defects is introduced on the edges of the sample, the no-slip behavior is restored for all the values of the microscopic slip length.
Furthermore, the interplay between the microscopic slip length and the sample geometry is investigated
and used to propose a simple device for measuring the dependence of the microscopic slip length on the state parameters such as the temperature or the chemical potential.
The final part of this thesis is devoted to a different aspect of the hydrodynamic transport -- a computation of the value of hydrodynamic transport coefficients using a microscopic theory.
The physical situation of interest is one in which time reversal and parity invariance of a 2-dimensional system are broken, due to the presence of an external magnetic field.
In such a situation an unusual class of transport coefficients is allowed in the hydrodynamic description, so-called odd coefficients. The term comes from the fact that they encode response that is transverse to the applied perturbation.
These odd coefficients for 2 dimensions were previously studied mostly at weak coupling, i.e. using descriptions based on quasi-particles.
This work, however, presents the way of calculating them for strongly coupled model system.
To achieve this a high-energy-physics-inspired framework of holographic duality (AdS/CFT) is used.
In that approach, an effective model involving magnetically-sourced parity-breaking interactions is constructed for the system at finite temperature and chemical potential.
Performing a linear response analysis around the thermal states in that model allows one to read off the transport coefficients, especially the odd (Hall) viscosity coefficient that is of central interest in this study.
The mentioned Hall viscosity is found to be non-zero whenever the magnetic field is present, even for zero chemical potential.
This is unusual, as odd viscosity is expected to only be non-zero for non-zero charge density states.
The mechanism responsible for the presence of Hall viscosity in the discussed case turns out to be the following: charge density in the model is induced by either the chemical potential or the magnetic field, i.e. for non-zero magnetic field even at zero chemical potential some density of charge is present.
This charge contributes to the Hall viscosity in the usual way.
The odd viscosity coefficient is found to have different scaling behaviors for weak and strong magnetic field.
Interestingly, it turns out that the computations of the Hall (and shear) viscosities are relatively straightforward and analytically tractable in the proposed model.
This means that the results could be generalized to the zero-temperature case, which however is yet to be done.
It also suggests that the model may capture some universal mechanisms of generating the odd viscosity due to the presence of the magnetic field.
That intuition is backed by the fact that some of the effective models of quantum Hall states also predict similar mechanism in which charge density is induced by the presence of the magnetic field. Despite these similarities, further studies are needed to establish a solid connection between these systems.
In particular, in the model under consideration no mechanism of quantization of the Hall viscosity is found, while the mentioned models of quantum Hall states predict quantization of that transport coefficient.
|
3 |
Entanglement Entropy in Cosmology and Emergent GravityAkhil Jaisingh Sheoran (15348844) 25 April 2023 (has links)
<p>Entanglement entropy (EE) is a quantum information theoretic measure that quantifies the correlations between a region and its surroundings. We study this quantity in the following two setups : </p>
<ul>
<li>We look at the dynamics of a free minimally coupled, massless scalar field in a deSitter expansion, where the expansion stops after some time (i.e. we quench the expansion) and transitions to flat spacetime. We study the evolution of entanglement entropy (EE) and the Rényi entropy of a spatial region during the expansion and, more interestingly, after the expansion stops, calculating its time evolution numerically. The EE increases during the expansion but the growth is much more rapid after the expansion ends, finally saturating at late times, with saturation values obeying a volume law. The final state of the subregion is a partially thermalized state, reminiscent of a Gibbs ensemble. We comment on application of our results to the question of when and how cosmological perturbations decohere.</li>
<li>We study the EE in a theory that is holographically dual to a BTZ black hole geometry in the presence of a scalar field, using the Ryu-Takayangi (RT) formula. Gaberdiel and Gopakumar had conjectured that the theory of N free fermions in 1+1 dimensions, for large N, is dual to a higher spin gravity theory with two scalar fields in 2+1 dimensions. So, we choose our boundary theory to be the theory of N free Dirac fermions with a uniformly winding mass, m e<sup>iqx</sup>, in two spacetime dimensions (which describes for instance a superconducting current in an N-channel wire). However, to O(m<sup>2</sup>), thermodynamic quantities can be computed using Einstein gravity. We aim to check if the same holds true for entanglement entropy (EE). Doing calculations on both sides of the duality, we find that general relativity does indeed correctly account for EE of single intervals to O(m<sup>2</sup>).</li>
</ul>
|
Page generated in 0.0177 seconds