Spelling suggestions: "subject:"d’ashforth"" "subject:"bashforth""
1 |
Fourth order Multi-Time-Stepping Adams-Bashforth (MTSAB) scheme for NASA Glenn Research Center’s Broadband Aeroacoustic Stator Simulation (BASS) CodeAllampalli, Vasanth 14 June 2010 (has links)
No description available.
|
2 |
Contractivity-Preserving Explicit 2-Step, 6-Stage, 6-Derivative Hermite-Birkhoff–Obrechkoff Ode Solver of Order 13Alzahrani, Abdulrahman January 2015 (has links)
In this thesis, we construct a new optimal contractivity-preserving (CP) explicit, 2-step, 6-stage, 6-derivative, Hermite--Birkhoff--Obrechkoff method of order 13, denoted by HBO(13) with nonnegative coefficients, for solving nonstiff first-order initial value problems y'=f(t,y), y(t_0)=y_0. This new method is the combination of a CP 2-step, 6-derivative, Hermite--Obrechkoff of order 9, denoted by HO(9), and a 6-stage Runge-Kutta method of order 5, denoted by RK(6,5). The new HBO(13) method has order 13.
We compare this new method, programmed in Matlab, to Adams-Bashforth-Moulton method of order 13 in PECE mode, denoted by ABM(13), by testing them on several frequently used test problems, and show that HBO(13) is more efficient with respect to the CPU time, the global error at the endpoint of integration and the relative energy error. We show that the new HBO(13) method has a larger scaled interval of absolute stability than ABM(13) in PECE mode.
|
3 |
Simulação em variáveis primitivas de escoamento incompressíveis com atualizacao direta e explícita para pressãoPlatte, Rodrigo Barcelos January 1998 (has links)
No presente trabalho estudam-se diferentes técnicas explícitas, em diferenças finitas, no emprego de algoritmos do tipo velocidade-pressão para simulação de escoamentos incompressíveis. O método de resolução da pressão de maneira direta e explícita, introduzido por Bravo e Claeyssen [BRA 97a], é analisado. Faz-se uma aproximação para o erro causado por esta técnica, e verifica-se como isto afeta a equação da continuidade. As simulações são realizadas na cavidade quadrada, comparando-se os diferentes métodos e validando as aproximações realizadas no estudo do método de resolução da pressão. Além disso, simula-se o escoamento em cavidades profundas e rasas, observandose a formação de vórtices e distribuição de energia cinética. Simulações do escoamento na cavidade cúbica também são apresentadas. / In this work different explicit technics in finite defferences in the application of velocity-pressure algorithm to simulate incompressible flows have been studied. The direct and explicit method of pressure resolution, introduced by Bravo anel Claeyssen [BRA 97a] is analyzed. An approximation to the error caused by this method is made, anel how this affects the continuity equation is verified. The simulations are maele in a square cavity, comparing the differents methoels anel valielating the approximations maele in the study of the pressure resolution method. Besieles this, flow in eleep and shallow cavities is simulateel, observing the formation of vortices and kinetic energy distribution. Simulations of the flow in the cubical cavity are also considered.
|
4 |
Simulação em variáveis primitivas de escoamento incompressíveis com atualizacao direta e explícita para pressãoPlatte, Rodrigo Barcelos January 1998 (has links)
No presente trabalho estudam-se diferentes técnicas explícitas, em diferenças finitas, no emprego de algoritmos do tipo velocidade-pressão para simulação de escoamentos incompressíveis. O método de resolução da pressão de maneira direta e explícita, introduzido por Bravo e Claeyssen [BRA 97a], é analisado. Faz-se uma aproximação para o erro causado por esta técnica, e verifica-se como isto afeta a equação da continuidade. As simulações são realizadas na cavidade quadrada, comparando-se os diferentes métodos e validando as aproximações realizadas no estudo do método de resolução da pressão. Além disso, simula-se o escoamento em cavidades profundas e rasas, observandose a formação de vórtices e distribuição de energia cinética. Simulações do escoamento na cavidade cúbica também são apresentadas. / In this work different explicit technics in finite defferences in the application of velocity-pressure algorithm to simulate incompressible flows have been studied. The direct and explicit method of pressure resolution, introduced by Bravo anel Claeyssen [BRA 97a] is analyzed. An approximation to the error caused by this method is made, anel how this affects the continuity equation is verified. The simulations are maele in a square cavity, comparing the differents methoels anel valielating the approximations maele in the study of the pressure resolution method. Besieles this, flow in eleep and shallow cavities is simulateel, observing the formation of vortices and kinetic energy distribution. Simulations of the flow in the cubical cavity are also considered.
|
5 |
Simulação em variáveis primitivas de escoamento incompressíveis com atualizacao direta e explícita para pressãoPlatte, Rodrigo Barcelos January 1998 (has links)
No presente trabalho estudam-se diferentes técnicas explícitas, em diferenças finitas, no emprego de algoritmos do tipo velocidade-pressão para simulação de escoamentos incompressíveis. O método de resolução da pressão de maneira direta e explícita, introduzido por Bravo e Claeyssen [BRA 97a], é analisado. Faz-se uma aproximação para o erro causado por esta técnica, e verifica-se como isto afeta a equação da continuidade. As simulações são realizadas na cavidade quadrada, comparando-se os diferentes métodos e validando as aproximações realizadas no estudo do método de resolução da pressão. Além disso, simula-se o escoamento em cavidades profundas e rasas, observandose a formação de vórtices e distribuição de energia cinética. Simulações do escoamento na cavidade cúbica também são apresentadas. / In this work different explicit technics in finite defferences in the application of velocity-pressure algorithm to simulate incompressible flows have been studied. The direct and explicit method of pressure resolution, introduced by Bravo anel Claeyssen [BRA 97a] is analyzed. An approximation to the error caused by this method is made, anel how this affects the continuity equation is verified. The simulations are maele in a square cavity, comparing the differents methoels anel valielating the approximations maele in the study of the pressure resolution method. Besieles this, flow in eleep and shallow cavities is simulateel, observing the formation of vortices and kinetic energy distribution. Simulations of the flow in the cubical cavity are also considered.
|
6 |
Vliv přesnosti aritmetických operací na přesnost numerických metod / Numerical Methods Accuracy vs Precision of ArithmeticKluknavský, František January 2012 (has links)
Thesis is dedicated to evaluation of roundoff impact on numerical integration methods accuracy and effectivity. Contains theoretical expectations taken from existing literature, implementation of chosen methods, experimental measurement of attained accuracy under different circumstances and their comparison with regard to time complexity. Library contains Runge-Kutta methods to order 7 and Adams-Bashforth methods to order 20 implemented using C++ templates which allow optional arbitrary-precision arithmetic. Small models with known analytic solution were used for experiments.
|
7 |
Numerical methods for a four dimensional hyperchaotic system with applicationsSibiya, Abram Hlophane 05 1900 (has links)
This study seeks to develop a method that generalises the use of Adams-Bashforth to
solve or treat partial differential equations with local and non-local differentiation by
deriving a two-step Adams-Bashforth numerical scheme in Laplace space. The resulting
solution is then transformed back into the real space by using the inverse Laplace
transform. This is a powerful numerical algorithm for fractional order derivative. The
error analysis for the method is studied and presented. The numerical simulations of
the method as applied to the four-dimensional model, Caputo-Lu-Chen model and the
wave equation are presented.
In the analysis, the bifurcation dynamics are discussed and the periodic doubling processes
that eventually caused chaotic behaviour (butterfly attractor) are shown. The
related graphical simulations that show the existence of fractal structure that is characterised
by chaos and usually called strange attractors are provided.
For the Caputo-Lu-Chen model, graphical simulations have been realised in both integer
and fractional derivative orders. / Mathematical Sciences / M. Sc. (Applied Mathematics)
|
Page generated in 0.0572 seconds