• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear Adaptive Estimation Andits Application To Synchronization Of Lorenz System

Jin, Yufang 01 January 2004 (has links)
Synchronization and estimation of unknown constant parameters for Lorenz-type transmitter are studied under the assumption that one of the three state variables is not transmitted and that transmitter parameters are not known apriori. An adaptive algorithm is proposed to estimate both the state and system parameters. Since Lorenz system shows the property of sensitivity to initial conditions and evolves in different mode with parameter variation, an equivalent system is introduced. The adaptive observer is designed based on this equivalent system without any requirement on initial conditions of the observer. It is shown by Lyapunov arguments and persistent excitation analysis that exponential stability of state and parameter estimation is guaranteed. Simulation results are included to demonstrate properties of the algorithm. In a practical communication system, the received signals presented at the receiver part differ from those which were transmitted due to the effects of noise. The proposed synchronization scheme is robust with regard to external bounded disturbance. When an additive white gaussian noise (AWGN) channel model is considered, estimates of state and parameter converge except for small errors. The results show promise in either coherent detection or the message decoding in telecommunication systems.
2

Conception d'un générateur de valeurs aléatoires en technologie CMOS AMS 0.35µm / Random generator Design in 0.35m AMS CMOS Technology

Aguilar Angulo, Julio Alexander 15 June 2015 (has links)
Les générateurs de suites binaires aléatoires constituent la partie primordiale d'un système cryptographique. La vitesse, la qualité des suites générées, la sécurité et la consommation jouent un rôle essentiel dans le choix d'un générateur. La sécurité du système cryptographique augmente si un tel système peut être réalisé dans un seul circuit.Le travail de recherche développé consiste donc en la réalisation d'un générateur de nombres aléatoires fonctionnant en basse consommation, basse vitesse. Le circuit proposé est de type analogique et valide l'ensemble des tests NIST assurant le caractère du signal. Une réalisation sur Silicium en technologie 0,35μm a été implémentée et validée via les tests NIST développés sous Matlab. De ce travail de thèse, un certain nombre de publications ont montré la plus-value recherche des résultats. / Random binary sequences generators constitute the essential part of a system Cryptographic. The speed, quality of generated suites, safety and consumption play an essential role in the selection of a generator. The security of the cryptographic system increases if such a system can be realized in a single circuit.The developed research work consists in the realization of a random number generator running in low power, low speed. The proposed circuit is analog and Valid all NIST tests ensuring the randomness of a signal.A realization on silicon in 0,35μm technology has been implemented and validated through NIST developed tests Matlab. In this thesis, a number of publications have demonstrated the added value search results.
3

Analysis and modeling of diffuse ultrasonic signals for structural health monitoring

Lu, Yinghui 06 July 2007 (has links)
Structural Health Monitoring (SHM) refers to the process of nondestructive autonomous in situ monitoring of the integrity of critical engineering structures such as airplanes, bridges and buildings. Ultrasonic wave propagation is an ideal interrogation method for SHM because ultrasound is the elastic vibration of the material itself and is thus directly affected by any structural damage occurring in the paths of the propagating waves. The objective of this thesis is to provide a comprehensive damage detection strategy for SHM using diffuse ultrasonic waves. This strategy includes a systematic temperature compensation method, differential feature extraction methods optimized for discriminating benign surface condition changes from damage, and data fusion methods to determine the structural status. The temperature compensation method is based upon a set of pre-recorded baselines. Using the methods of baseline selection and baseline correction, a baseline that best matches a monitored signal in temperature is provided. For the differential feature extraction, three types of features are proposed. The first type includes basic differential features such as mean squared error. The second type is derived from a matching pursuit based signal decomposition. An ultrasonic signal is decomposed into a sum of characteristic wavelets, and differential features are extracted based upon changes in the decomposition between a baseline signal and a monitored signal. The third type is a phase space feature extraction method, where an ultrasonic signal is embedded into phase space and features are extracted based on changes of the phase portrait. The structural status is determined based on a data fusion strategy consisting of a threshold selection method, fusion at the feature level, and fusion at the sensor level. The proposed damage detection strategy is applied to experiments on aluminum specimens with artificial defects subjected to a variety of environmental variations. Results as measured by the probability of detection, the false alarm rate, and the size of damage detected demonstrate the viability of the proposed techniques.
4

A BUILDING BLOCK APPROACH FOR DESIGNING SELF-SYNCHRONOUS CHAOTIC SYSTEMS FOR SECURE COMMUNICATION

MENG, LI 02 September 2003 (has links)
No description available.
5

Analýza a obvodové realizace speciálních chaotických systémů / Analysis and circuit realization of special chaotic systems

Rujzl, Miroslav January 2021 (has links)
This master‘s thesis deals with analysis of electronic dynamical systems exhibiting chaotic solution. In introduction, some basic concepts for better understanding of dynamical systems are explained. After introduction, current knowledge from the world of circuits exhibiting chaotic solutions are discussed. The best-known chaotic systems are analyzed numerically in Matlab software. Numerical analysis and experimental verification were demonstrated at C class transistor amplifier, which confirmed the chaotic behavior and generation of a strange attractor.
6

[en] DYNAMICS OF PENDULUM AND GYROSCOPIC SYSTEMS WITH INNER ACTUATION BY A NON-LINEAR CONTROLLER / [pt] DINÂMICA DE SISTEMAS PENDULARES E GIROSCÓPICOS POR ATUAÇÃO INTERNA DE CONTROLES NÃO LINEARES

MARCELO DA CRUZ PEREIRA 05 June 2019 (has links)
[pt] Esta tese apresenta o estudo dinâmico de três sistemas pendulares e de um sistema de corpo livre no espaço com 3 graus de liberdade. O primeiro sistema pendular consiste de um pêndulo acoplado ao centro de uma roda, que rola sem escorregar na direção horizontal, enquanto o segundo, se baseia num pêndulo simples, porém com comprimento variável, que ao mudar seu tamanho consegue ganhar/perder energia para aumentar/diminuir a amplitude de seu movimento e finalmente o terceiro está baseado num pêndulo duplo que, a despeito de restrições impostas ao movimento consegue inserir/retirar energia do sistema de forma similar ao segundo. O modelo de corpo livre no espaço está baseado na suspensão cardânica de um giroscópio e se utiliza de um modelo didático real de um giroscópio para observação das características dinâmicas. A partir destes exemplos estudou-se formas de controle não-linear para movimentar os sistemas de maneira a utilizar-se da mudança de posição interna do centro de massa para injetar e retirar energia dos sistemas. Foram gerados modelos matemáticos simulados no Simulink valendo-se do Matlab para análise, e geradas animações também com o Matlab para melhor observação dos efeitos. Em paralelo, para dois destes sistemas foram construídos em bancada experimentos para comprovação dos resultados numéricos, e os resultados são comparados em cada caso, analisando as diferenças. Ao final, todas as observações sobre os estudos foram analisadas, e comentários feitos baseados nos resultados, além de sugerir trabalhos futuros. / [en] This thesis presents the study of the dynamics of three pendulum systems and a 3DoF free body in space. The first pendular system is based on a simple pendulum coupled to the center of a wheel that translates horizontally without slip; while the second system is based on a simple pendulum, with variable length, which is able to acquire/lose energy to grow/diminish the amplitude of its movement; and finally the third one is based on a double pendulum that, in spite of movement restrictions, can as well inject/drop energy like the second system. The free body in space is based on a real gyroscope for didactical use, which is helpful for the observation of the dynamic characteristics of the motion. Using these examples a non-linear control was designed to drive the system by using the property that changing the internal position of the center of mass it is possible to inject or to subtract energy from the systems. Mathematical models were simulated with Simulik software, Matlab was used for the analysis, and animations were created also with Matlab for a better sight of the effects. In parallel, there were developed 2 test rig systems for verification of the numerical results. In the conclusions all the considerations about the study were analyzed, and comments made on the results, as well also future developments are suggested.
7

Numerical methods for a four dimensional hyperchaotic system with applications

Sibiya, Abram Hlophane 05 1900 (has links)
This study seeks to develop a method that generalises the use of Adams-Bashforth to solve or treat partial differential equations with local and non-local differentiation by deriving a two-step Adams-Bashforth numerical scheme in Laplace space. The resulting solution is then transformed back into the real space by using the inverse Laplace transform. This is a powerful numerical algorithm for fractional order derivative. The error analysis for the method is studied and presented. The numerical simulations of the method as applied to the four-dimensional model, Caputo-Lu-Chen model and the wave equation are presented. In the analysis, the bifurcation dynamics are discussed and the periodic doubling processes that eventually caused chaotic behaviour (butterfly attractor) are shown. The related graphical simulations that show the existence of fractal structure that is characterised by chaos and usually called strange attractors are provided. For the Caputo-Lu-Chen model, graphical simulations have been realised in both integer and fractional derivative orders. / Mathematical Sciences / M. Sc. (Applied Mathematics)

Page generated in 0.0639 seconds