• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 11
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 39
  • 10
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um algoritmo para simplificar sistemas de equações diferenciais que descrevem a cinética de reações químicas / An algorithm to simplify systems of differential equations that describe the kinetics of chemical reactions

Guimarães, Amanda Sayuri 10 June 2016 (has links)
O estudo da evolução da concentração de elementos de uma reação química, conhecida como Cinética Química, é de extrema importância para a compreensão das complexas interações em sistemas biológicos. Uma maneira de descrever a cinética de uma reação química é utilizando um sistema de equações diferenciais ordinárias (EDOs). Uma vez que para resolver um sistema de equações diferenciais ordinárias pode ser uma tarefa difícil (ou mesmo inviável), métodos numéricos são utilizados para realizar simulações, ou seja, para obter concentrações aproximadas das espécies químicas envolvidas durante um determinado período de tempo. No entanto, quanto maior for o sistema simulado de EDOs, mais os métodos numéricos estão sujeitos a erros. Além disso, o aumento do tamanho do sistema muitas vezes resulta em simulações que são mais exigentes do ponto de vista computacional. Assim, o objetivo deste projeto de mestrado é o desenvolvimento de regras para simplificar os sistemas de equações diferenciais ordinárias que modelam a cinética de reações químicas e, portanto, a obtenção de um algoritmo para executar simulações numéricas de um modo mais rápido e menos propenso a erros. Mais do que diminuir o erro e o tempo de execução, esta simplificação possibilita o biólogo escolher a solução mais factível do ponto de vista de medida. Isso porque, a identificação dos sistemas (i.e., inferência dos parâmetros) requer que a concentração de todas as espécies químicas seja conhecida, ao menos em um certo intervalo de tempo. Contudo, em muitos casos, não é possível medir a concentração de todas as espécies químicas consideradas. Esta simplificação gera sistemas equivalentes ao original, mas que dispensa a utilização de certas concentrações de espécies químicas. Um sistema de equações diferenciais ordinárias pode ser simplificado considerando as relações de conservação de massa, que são equações algébricas. Além disso, no caso de reações enzimáticas, o sistema de equações diferenciais ordinárias pode ser simplificado pelo pressuposto de que a concentração do complexo enzima-substrato mantém-se constante, o que permite a utilização da equação de Michaelis-Menten. De todas as combinações possíveis das equações algébricas com as equações diferenciais, uma família de sistemas simplificados de EDOs foi construída, permitindo a escolha do sistema mais simples. Esta escolha segue um critério guloso que favorece a minimização do número de equações diferenciais e do número total de termos. As regras em desenvolvimento de simplificação dos sistemas de equações diferenciais ordinárias foram utilizados para projetar um algoritmo, que foi implementado usando a linguagem de programação Python. O algoritmo concebido foi testado utilizando instâncias artificiais. / The study of the evolution of the concentration of species in a chemical reaction, known as Chemical Kinetics, is of paramount importance for the understanding of complex interactions in biological systems. One way to describe the kinetics of a chemical reaction is using a system of ordinary differential equations (ODEs). Once to solve a system of ODEs can be a difficult (or even unfeasible) task, numerical methods are employed to carry out simulations, that is, to obtain approximated concentrations of the involved chemical species for a certain time frame. However, the larger is the simulated system of ODEs, the more numerical methods are subject to error. Moreover, the increase of the system size often results in simulations that are more demanding from the computational point of view. Thus, the objective is the development of rules to simplify systems of ODEs that models the kinetics of chemical reactions, hence obtaining an algorithm to execute numerical simulations in a faster way and less prone to error. More than decrease error and run time, this simplification allows the biologist to choose the most feasible solution from the point of view of measurement. This is because the identification of systems (i.e., inferring parameters) requires that the concentration of all chemical species is known, at least in a certain time interval. However, in many cases it is not possible to measure the concentration of all chemical species considered. This simplification creates systems equivalent to the original, but that does not require the use of certain concentrations of chemical species. A system of ODEs can be simplified considering the relations of mass conservation, which are algebraic equations. Furthermore, in the case of enzymatic reactions, the system of ODEs can be simplified under the assumption that the concentration of enzyme-substrate complex remains constant, which allows us to use the Michaelis-Menten equation. From all possible combinations of the algebraic equations with differential equations, a family of simplified systems of ODEs will be built, allowing the choice of a simplest system. This choice will follow a greedy criterion which favors the minimization of number of differential equations and the total number of terms. The rules under development to simplify systems of ODEs will be used to design an algorithm, which will be implemented using Python programming language. The designed algorithm will be tested using synthetic data.
2

Analyse numérique des équations de Bloch-Torrey / Numerical analysis of the Bloch-Torrey equations

Mekkaoui, Imen 21 November 2016 (has links)
L’imagerie par résonance magnétique de diffusion (IRMd) est une technique non-invasive permettant d’accéder à l'information structurelle des tissus biologiques à travers l’étude du mouvement de diffusion des molécules d’eau dans les tissus. Ses applications sont nombreuses en neurologie pour le diagnostic de certaines anomalies cérébrales. Cependant, en raison du mouvement cardiaque, l’utilisation de cette technique pour accéder à l’architecture du cœur in vivo représente un grand défi. Le mouvement cardiaque a été identifié comme une des sources majeures de perte du signal mesuré en IRM de diffusion. A cause de la sensibilité au mouvement, il est difficile d’évaluer dans quelle mesure les caractéristiques de diffusion obtenues à partir de l’IRM de diffusion reflètent les propriétés réelles des tissus cardiaques. Dans ce cadre, la modélisation et la simulation numérique du signal d’IRM de diffusion offrent une approche alternative pour aborder le problème. L’objectif de cette thèse est d’étudier numériquement l’influence du mouvement cardiaque sur les images de diffusion et de s’intéresser à la question d’atténuation de l’effet du mouvement cardiaque sur le signal d’IRM de diffusion. Le premier chapitre est consacré à l’introduction du principe physique de l'imagerie par résonance magnétique(IRM). Le deuxième chapitre présente le principe de l’IRM de diffusion et résume l’état de l’art des différents modèles proposés dans la littérature pour modéliser le signal d’IRM de diffusion. Dans le troisième chapitre un modèle modifié de l’équation de Bloch-Torrey dans un domaine qui se déforme au cours du temps est introduit et étudié. Ce modèle représente une généralisation de l’équation de Bloch-Torrey utilisée dans la modélisation du signal d’IRM de diffusion dans le cas sans mouvement. Dans le quatrième chapitre, l’influence du mouvement cardiaque sur le signal d’IRM de diffusion est étudiée numériquement en utilisant le modèle de Bloch-Torrey modifié et un champ de mouvement analytique imitant une déformation réaliste du cœur. L’étude numérique présentée, permet de quantifier l’effet du mouvement sur la mesure de diffusion en fonction du type de la séquence de codage de diffusion utilisée, de classer ces séquences en terme de sensibilité au mouvement cardiaque et d’identifier une fenêtre temporelle par rapport au cycle cardiaque où l’influence du mouvement est réduite. Enfin, dans le cinquième chapitre, une méthode de correction de mouvement est présentée afin de minimiser l’effet du mouvement cardiaque sur les images de diffusion. Cette méthode s’appuie sur un développement singulier du modèle de Bloch-Torrey modifié pour obtenir un modèle asymptotique qui permet de résoudre le problème inverse de récupération puis correction de la diffusion influencée par le mouvement cardiaque. / Diffusion magnetic resonance imaging (dMRI) is a non-invasive technique allowing access to the structural information of the biological tissues through the study of the diffusion motion of water molecules in tissues. Its applications are numerous in neurology, especially for the diagnosis of certain brain abnormalities, and for the study of the human cerebral white matter. However, due to the cardiac motion, the use of this technique to study the architecture of the in vivo human heart represents a great challenge. Cardiac motion has been identified as a major source of signal loss. Because of the sensitivity to motion, it is difficult to assess to what extent the diffusion characteristics obtained from diffusion MRI reflect the real properties of the cardiac tissue. In this context, modelling and numerical simulation of the diffusion MRI signal offer an alternative approach to address the problem. The objective of this thesis is to study numerically the influence of cardiac motion on the diffusion images and to focus on the issue of attenuation of the cardiac motion effect on the diffusion MRI signal. The first chapter of this thesis is devoted to the introduction of the physical principle of nuclear magnetic resonance (NMR) and image reconstruction techniques in MRI. The second chapter presents the principle of diffusion MRI and summarizes the state of the art of the various models proposed in the litera- ture to model the diffusion MRI signal. In the third chapter a modified model of the Bloch-Torrey equation in a domain that deforms over time is introduced and studied. This model represents a generalization of the Bloch-Torrey equation used to model the diffusion MRI signal in the case of static organs. In the fourth chapter, the influence of cardiac motion on the diffusion MRI signal is investigated numerically by using the modified Bloch-Torrey equation and an analytical motion model mimicking a realistic deformation of the heart. The numerical study reported here, can quantify the effect of motion on the diffusion measurement depending on the type of the diffusion coding sequence. The results obtained allow us to classify the diffusion encoding sequences in terms of sensitivity to the cardiac motion and identify for each sequence a temporal window in the cardiac cycle in which the influence of motion is reduced. Finally, in the fifth chapter, a motion correction method is presented to minimize the effect of cardiac motion on the diffusion images. This method is based on a singular development of the modified Bloch-Torrey model in order to obtain an asymptotic model of ordinary differential equation that gives a relationship between the true diffusion and the diffusion reconstructed in the presence of motion. This relationship is then used to solve the inverse problem of recovery and correction of the diffusion influenced by the cardiac motion.
3

Introdução às equações diferenciais ordinárias no contexto das funções generalizadas temperadas de Colombeau / Introduction to the ordinary differential equation in the framework of Colombeau\'s tempered generalized functions

França, Sávio Mendes 21 February 2008 (has links)
O objetivo deste trabalho é estudar, sob que condições, o problema de valor inicial associado a uma equação diferencial ordinária de primeira ordem, no contexto das funções generalizadas temperadas de Colombeau, admite pelo menos uma (ou somente uma) solução generalizada ou solução generalizada temperada. Para essa finalidade estudamos algumas propriedades das funções generalizadas, das funções generalizadas temperadas e das funções generalizadas temperadas na segunda variável. Além do estudo dessas propriedades, apresentamos uma imersão do espaço das distribuições na álgebra das funções generalizadas de Colombeau e uma imersão do espaço das distribuições temperadas na álgebra das funções generalizadas temperadas de Colombeau. Finalizamos o trabalho estudando, no contexto das funções generalizadas temperadas de Colombeau, uma equação de Euler-Lagrange e solução para frente em sistemas autônomos. / The objective of this work is to study, under which conditions, the initial value problem associated with a first-order ordinary differential equation, in the framework of Colombeau\'s tempered generalized functions, it admits at least one (or only one) generalized solution or generalized tempered solution. For this purpose we studied some properties of the generalized functions, of the generalized tempered functions and the generalized tempered functions in the second variable. Besides the study of these properties, we present an embedding of the space of distributions into the algebra of Colombeau\'s generalized functions and an embedding of the space of tempered distributions into the algebra of Colombeau\'s tempered generalized functions. We end the work studying, in the framework of Colombeau\'s tempered generalized functions, an Euler-Lagrange equation and forward solution for autonomous system.
4

Introdução às equações diferenciais ordinárias no contexto das funções generalizadas temperadas de Colombeau / Introduction to the ordinary differential equation in the framework of Colombeau\'s tempered generalized functions

Sávio Mendes França 21 February 2008 (has links)
O objetivo deste trabalho é estudar, sob que condições, o problema de valor inicial associado a uma equação diferencial ordinária de primeira ordem, no contexto das funções generalizadas temperadas de Colombeau, admite pelo menos uma (ou somente uma) solução generalizada ou solução generalizada temperada. Para essa finalidade estudamos algumas propriedades das funções generalizadas, das funções generalizadas temperadas e das funções generalizadas temperadas na segunda variável. Além do estudo dessas propriedades, apresentamos uma imersão do espaço das distribuições na álgebra das funções generalizadas de Colombeau e uma imersão do espaço das distribuições temperadas na álgebra das funções generalizadas temperadas de Colombeau. Finalizamos o trabalho estudando, no contexto das funções generalizadas temperadas de Colombeau, uma equação de Euler-Lagrange e solução para frente em sistemas autônomos. / The objective of this work is to study, under which conditions, the initial value problem associated with a first-order ordinary differential equation, in the framework of Colombeau\'s tempered generalized functions, it admits at least one (or only one) generalized solution or generalized tempered solution. For this purpose we studied some properties of the generalized functions, of the generalized tempered functions and the generalized tempered functions in the second variable. Besides the study of these properties, we present an embedding of the space of distributions into the algebra of Colombeau\'s generalized functions and an embedding of the space of tempered distributions into the algebra of Colombeau\'s tempered generalized functions. We end the work studying, in the framework of Colombeau\'s tempered generalized functions, an Euler-Lagrange equation and forward solution for autonomous system.
5

Numerical Computation for Nonlinear Beam Problems

Tsai, Siang-Yu 04 July 2005 (has links)
Beam problem is very important for engineering theoretically and practically. In this thesis we study such kind of nonlinear 4-th order ordiniary differential equations with nonlinear boundary conditions. The well-posedness of these boundary value problems will be discussed. Moreover, we will design different schemes to solve them, through differential equation, integral equation or minimization. Each type can further be discretized by finite difference, finite element or spectral method, etc. In the end we will compare all methods and find the best one.
6

Modelos matemáticos de dinâmica de células tumorais e imunes: análise de estabilidade e simulações numéricas / Mathematical models of tumor and immune cell dynamics: stability analysis and numerical simulations

Gil, Wesley Felipe Ferreira Mora 16 February 2018 (has links)
Submitted by Wesley Felipe Ferreira Mora Gil null (wes_moragil@hotmail.com) on 2018-04-03T13:14:51Z No. of bitstreams: 1 dissertacao weley versao final.pdf: 3054931 bytes, checksum: 321569a638824c9d0f4d6a48a3d1dee2 (MD5) / Approved for entry into archive by ROSANGELA APARECIDA LOBO null (rosangelalobo@btu.unesp.br) on 2018-04-05T13:02:04Z (GMT) No. of bitstreams: 1 gil_wffm_me_bot.pdf: 3054931 bytes, checksum: 321569a638824c9d0f4d6a48a3d1dee2 (MD5) / Made available in DSpace on 2018-04-05T13:02:04Z (GMT). No. of bitstreams: 1 gil_wffm_me_bot.pdf: 3054931 bytes, checksum: 321569a638824c9d0f4d6a48a3d1dee2 (MD5) Previous issue date: 2018-02-16 / Câncer pode ser definido como um crescimento desordenado de células que não permanecem em uma região limitada, invadindo outros tecidos e órgãos. Indicadores mostram que a mortalidade por câncer vem aumentando, por esse motivo é imprescindível a busca por novos tratamentos. A imunoterapia surge como uma modalidade de tratamento promissora, a qual utiliza-se do sistema imunológico no combate ao câncer. Outra tendência na oncologia é a combinação de diferentes modalidades de tratamentos. Neste trabalho, propomos um modelo matemático de equações diferenciais ordinárias, com o intuito de analisar como o tratamento imunoterápico e quimioterápico podem auxiliar um ao outro no tratamento do câncer. Utilizamos um software matemático para a construção dos retratos de fase e o método Runge-Kutta de quarta ordem para as simulações numéricas. As simulações mostraram que a imunoterapia e a quimioterapia podem levar à eliminação das células e uma sobrevida maior após o tratamento. É exibido também que citotoxicidade da quimioterapia é fundamental para o sucesso do tratamento. / Cancer may be defined as a uncontrolled growth of cells that do not remain in a limited region, invading other tissues and organs. Indicators show that mortality from cancer is increasing, so the search for new treatments is essential. Immunotherapy appears as a promising treatment modality, which uses the immunological system in the fight against cancer. Another trend in oncology is the combination of different treatment modalities. In this work, we propose a mathematical model of ordinary differential equations, in order to analyze how immunotherapeutic and chemotherapeutic treatment can help one another reciprocally. We use a mathematical software for the construction of the phase portraits and the method fourth-order Runge-Kutta for numerical simulations. The simulations have shown indications that immunotherapy may assist the chemotherapy by causing cure or by allowing a longer overlife after treatment. It is also shown that cytotoxicity of chemotherapy is critical to successful treatment.
7

Modelos matemáticos de dinâmica de células tumorais e imunes análise de estabilidade e simulações numéricas /

Gil, Wesley Felipe Ferreira Mora January 2018 (has links)
Orientador: Paulo Fernando de Arruda Mancera / Resumo: Câncer pode ser definido como um crescimento desordenado de células que não permanecem em uma região limitada, invadindo outros tecidos e órgãos. Indicadores mostram que a mortalidade por câncer vem aumentando, por esse motivo é imprescindível a busca por novos tratamentos. A imunoterapia surge como uma modalidade de tratamento promissora, a qual utiliza-se do sistema imunológico no combate ao câncer. Outra tendência na oncologia é a combinação de diferentes modalidades de tratamentos. Neste trabalho, propomos um modelo matemático de equações diferenciais ordinárias, com o intuito de analisar como o tratamento imunoterápico e quimioterápico podem auxiliar um ao outro no tratamento do câncer. Utilizamos um software matemático para a construção dos retratos de fase e o método Runge-Kutta de quarta ordem para as simulações numéricas. As simulações mostraram que a imunoterapia e a quimioterapia podem levar à eliminação das células e uma sobrevida maior após o tratamento. É exibido também que citotoxicidade da quimioterapia é fundamental para o sucesso do tratamento. / Abstract: Cancer may be defined as a uncontrolled growth of cells that do not remain in a limited region, invading other tissues and organs. Indicators show that mortality from cancer is increasing, so the search for new treatments is essential. Immunotherapy appears as a promising treatment modality, which uses the immunological system in the fight against cancer. Another trend in oncology is the combination of different treatment modalities. In this work, we propose a mathematical model of ordinary differential equations, in order to analyze how immunotherapeutic and chemotherapeutic treatment can help one another reciprocally. We use a mathematical software for the construction of the phase portraits and the method fourth-order Runge-Kutta for numerical simulations. The simulations have shown indications that immunotherapy may assist the chemotherapy by causing cure or by allowing a longer overlife after treatment. It is also shown that cytotoxicity of chemotherapy is critical to successful treatment. / Mestre
8

A Mathematical Journey of Cancer Growth

January 2016 (has links)
abstract: Cancer is a major health problem in the world today and is expected to become an even larger one in the future. Although cancer therapy has improved for many cancers in the last several decades, there is much room for further improvement. Mathematical modeling has the advantage of being able to test many theoretical therapies without having to perform clinical trials and experiments. Mathematical oncology will continue to be an important tool in the future regarding cancer therapies and management. This dissertation is structured as a growing tumor. Chapters 2 and 3 consider spheroid models. These models are adept at describing 'early-time' tumors, before the tumor needs to co-opt blood vessels to continue sustained growth. I consider two partial differential equation (PDE) models for spheroid growth of glioblastoma. I compare these models to in vitro experimental data for glioblastoma tumor cell lines and other proposed models. Further, I investigate the conditions under which traveling wave solutions exist and confirm numerically. As a tumor grows, it can no longer be approximated by a spheroid, and it becomes necessary to use in vivo data and more sophisticated modeling to model the growth and diffusion. In Chapter 4, I explore experimental data and computational models for describing growth and diffusion of glioblastoma in murine brains. I discuss not only how the data was obtained, but how the 3D brain geometry is created from Magnetic Resonance (MR) images. A 3D finite-difference code is used to model tumor growth using a basic reaction-diffusion equation. I formulate and test hypotheses as to why there are large differences between the final tumor sizes between the mice. Once a tumor has reached a detectable size, it is diagnosed, and treatment begins. Chapter 5 considers modeling the treatment of prostate cancer. I consider a joint model with hormonal therapy as well as immunotherapy. I consider a timing study to determine whether changing the vaccine timing has any effect on the outcome of the patient. In addition, I perform basic analysis on the six-dimensional ordinary differential equation (ODE). I also consider the limiting case, and perform a full global analysis. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2016
9

Um algoritmo para simplificar sistemas de equações diferenciais que descrevem a cinética de reações químicas / An algorithm to simplify systems of differential equations that describe the kinetics of chemical reactions

Amanda Sayuri Guimarães 10 June 2016 (has links)
O estudo da evolução da concentração de elementos de uma reação química, conhecida como Cinética Química, é de extrema importância para a compreensão das complexas interações em sistemas biológicos. Uma maneira de descrever a cinética de uma reação química é utilizando um sistema de equações diferenciais ordinárias (EDOs). Uma vez que para resolver um sistema de equações diferenciais ordinárias pode ser uma tarefa difícil (ou mesmo inviável), métodos numéricos são utilizados para realizar simulações, ou seja, para obter concentrações aproximadas das espécies químicas envolvidas durante um determinado período de tempo. No entanto, quanto maior for o sistema simulado de EDOs, mais os métodos numéricos estão sujeitos a erros. Além disso, o aumento do tamanho do sistema muitas vezes resulta em simulações que são mais exigentes do ponto de vista computacional. Assim, o objetivo deste projeto de mestrado é o desenvolvimento de regras para simplificar os sistemas de equações diferenciais ordinárias que modelam a cinética de reações químicas e, portanto, a obtenção de um algoritmo para executar simulações numéricas de um modo mais rápido e menos propenso a erros. Mais do que diminuir o erro e o tempo de execução, esta simplificação possibilita o biólogo escolher a solução mais factível do ponto de vista de medida. Isso porque, a identificação dos sistemas (i.e., inferência dos parâmetros) requer que a concentração de todas as espécies químicas seja conhecida, ao menos em um certo intervalo de tempo. Contudo, em muitos casos, não é possível medir a concentração de todas as espécies químicas consideradas. Esta simplificação gera sistemas equivalentes ao original, mas que dispensa a utilização de certas concentrações de espécies químicas. Um sistema de equações diferenciais ordinárias pode ser simplificado considerando as relações de conservação de massa, que são equações algébricas. Além disso, no caso de reações enzimáticas, o sistema de equações diferenciais ordinárias pode ser simplificado pelo pressuposto de que a concentração do complexo enzima-substrato mantém-se constante, o que permite a utilização da equação de Michaelis-Menten. De todas as combinações possíveis das equações algébricas com as equações diferenciais, uma família de sistemas simplificados de EDOs foi construída, permitindo a escolha do sistema mais simples. Esta escolha segue um critério guloso que favorece a minimização do número de equações diferenciais e do número total de termos. As regras em desenvolvimento de simplificação dos sistemas de equações diferenciais ordinárias foram utilizados para projetar um algoritmo, que foi implementado usando a linguagem de programação Python. O algoritmo concebido foi testado utilizando instâncias artificiais. / The study of the evolution of the concentration of species in a chemical reaction, known as Chemical Kinetics, is of paramount importance for the understanding of complex interactions in biological systems. One way to describe the kinetics of a chemical reaction is using a system of ordinary differential equations (ODEs). Once to solve a system of ODEs can be a difficult (or even unfeasible) task, numerical methods are employed to carry out simulations, that is, to obtain approximated concentrations of the involved chemical species for a certain time frame. However, the larger is the simulated system of ODEs, the more numerical methods are subject to error. Moreover, the increase of the system size often results in simulations that are more demanding from the computational point of view. Thus, the objective is the development of rules to simplify systems of ODEs that models the kinetics of chemical reactions, hence obtaining an algorithm to execute numerical simulations in a faster way and less prone to error. More than decrease error and run time, this simplification allows the biologist to choose the most feasible solution from the point of view of measurement. This is because the identification of systems (i.e., inferring parameters) requires that the concentration of all chemical species is known, at least in a certain time interval. However, in many cases it is not possible to measure the concentration of all chemical species considered. This simplification creates systems equivalent to the original, but that does not require the use of certain concentrations of chemical species. A system of ODEs can be simplified considering the relations of mass conservation, which are algebraic equations. Furthermore, in the case of enzymatic reactions, the system of ODEs can be simplified under the assumption that the concentration of enzyme-substrate complex remains constant, which allows us to use the Michaelis-Menten equation. From all possible combinations of the algebraic equations with differential equations, a family of simplified systems of ODEs will be built, allowing the choice of a simplest system. This choice will follow a greedy criterion which favors the minimization of number of differential equations and the total number of terms. The rules under development to simplify systems of ODEs will be used to design an algorithm, which will be implemented using Python programming language. The designed algorithm will be tested using synthetic data.
10

Analysis and Application of Haseltine and Rawlings's Hybrid Stochastic Simulation Algorithm

Wang, Shuo 06 October 2016 (has links)
Stochastic effects in cellular systems are usually modeled and simulated with Gillespie's stochastic simulation algorithm (SSA), which follows the same theoretical derivation as the chemical master equation (CME), but the low efficiency of SSA limits its application to large chemical networks. To improve efficiency of stochastic simulations, Haseltine and Rawlings proposed a hybrid of ODE and SSA algorithm, which combines ordinary differential equations (ODEs) for traditional deterministic models and SSA for stochastic models. In this dissertation, accuracy analysis, efficient implementation strategies, and application of of Haseltine and Rawlings's hybrid method (HR) to a budding yeast cell cycle model are discussed. Accuracy of the hybrid method HR is studied based on a linear chain reaction system, motivated from the modeling practice used for the budding yeast cell cycle control mechanism. Mathematical analysis and numerical results both show that the hybrid method HR is accurate if either numbers of molecules of reactants in fast reactions are above certain thresholds, or rate constants of fast reactions are much larger than rate constants of slow reactions. Our analysis also shows that the hybrid method HR allows for a much greater region in system parameter space than those for the slow scale SSA (ssSSA) and the stochastic quasi steady state assumption (SQSSA) method. Implementation of the hybrid method HR requires a stiff ODE solver for numerical integration and an efficient event-handling strategy for slow reaction firings. In this dissertation, an event-handling strategy is developed based on inverse interpolation. Performances of five wildly used stiff ODE solvers are measured in three numerical experiments. Furthermore, inspired by the strategy of the hybrid method HR, a hybrid of ODE and SSA stochastic models for the budding yeast cell cycle is developed, based on a deterministic model in the literature. Simulation results of this hybrid model match very well with biological experimental data, and this model is the first to do so with these recently available experimental data. This study demonstrates that the hybrid method HR has great potential for stochastic modeling and simulation of large biochemical networks. / Ph. D.

Page generated in 0.1552 seconds