• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse numérique des équations de Bloch-Torrey / Numerical analysis of the Bloch-Torrey equations

Mekkaoui, Imen 21 November 2016 (has links)
L’imagerie par résonance magnétique de diffusion (IRMd) est une technique non-invasive permettant d’accéder à l'information structurelle des tissus biologiques à travers l’étude du mouvement de diffusion des molécules d’eau dans les tissus. Ses applications sont nombreuses en neurologie pour le diagnostic de certaines anomalies cérébrales. Cependant, en raison du mouvement cardiaque, l’utilisation de cette technique pour accéder à l’architecture du cœur in vivo représente un grand défi. Le mouvement cardiaque a été identifié comme une des sources majeures de perte du signal mesuré en IRM de diffusion. A cause de la sensibilité au mouvement, il est difficile d’évaluer dans quelle mesure les caractéristiques de diffusion obtenues à partir de l’IRM de diffusion reflètent les propriétés réelles des tissus cardiaques. Dans ce cadre, la modélisation et la simulation numérique du signal d’IRM de diffusion offrent une approche alternative pour aborder le problème. L’objectif de cette thèse est d’étudier numériquement l’influence du mouvement cardiaque sur les images de diffusion et de s’intéresser à la question d’atténuation de l’effet du mouvement cardiaque sur le signal d’IRM de diffusion. Le premier chapitre est consacré à l’introduction du principe physique de l'imagerie par résonance magnétique(IRM). Le deuxième chapitre présente le principe de l’IRM de diffusion et résume l’état de l’art des différents modèles proposés dans la littérature pour modéliser le signal d’IRM de diffusion. Dans le troisième chapitre un modèle modifié de l’équation de Bloch-Torrey dans un domaine qui se déforme au cours du temps est introduit et étudié. Ce modèle représente une généralisation de l’équation de Bloch-Torrey utilisée dans la modélisation du signal d’IRM de diffusion dans le cas sans mouvement. Dans le quatrième chapitre, l’influence du mouvement cardiaque sur le signal d’IRM de diffusion est étudiée numériquement en utilisant le modèle de Bloch-Torrey modifié et un champ de mouvement analytique imitant une déformation réaliste du cœur. L’étude numérique présentée, permet de quantifier l’effet du mouvement sur la mesure de diffusion en fonction du type de la séquence de codage de diffusion utilisée, de classer ces séquences en terme de sensibilité au mouvement cardiaque et d’identifier une fenêtre temporelle par rapport au cycle cardiaque où l’influence du mouvement est réduite. Enfin, dans le cinquième chapitre, une méthode de correction de mouvement est présentée afin de minimiser l’effet du mouvement cardiaque sur les images de diffusion. Cette méthode s’appuie sur un développement singulier du modèle de Bloch-Torrey modifié pour obtenir un modèle asymptotique qui permet de résoudre le problème inverse de récupération puis correction de la diffusion influencée par le mouvement cardiaque. / Diffusion magnetic resonance imaging (dMRI) is a non-invasive technique allowing access to the structural information of the biological tissues through the study of the diffusion motion of water molecules in tissues. Its applications are numerous in neurology, especially for the diagnosis of certain brain abnormalities, and for the study of the human cerebral white matter. However, due to the cardiac motion, the use of this technique to study the architecture of the in vivo human heart represents a great challenge. Cardiac motion has been identified as a major source of signal loss. Because of the sensitivity to motion, it is difficult to assess to what extent the diffusion characteristics obtained from diffusion MRI reflect the real properties of the cardiac tissue. In this context, modelling and numerical simulation of the diffusion MRI signal offer an alternative approach to address the problem. The objective of this thesis is to study numerically the influence of cardiac motion on the diffusion images and to focus on the issue of attenuation of the cardiac motion effect on the diffusion MRI signal. The first chapter of this thesis is devoted to the introduction of the physical principle of nuclear magnetic resonance (NMR) and image reconstruction techniques in MRI. The second chapter presents the principle of diffusion MRI and summarizes the state of the art of the various models proposed in the litera- ture to model the diffusion MRI signal. In the third chapter a modified model of the Bloch-Torrey equation in a domain that deforms over time is introduced and studied. This model represents a generalization of the Bloch-Torrey equation used to model the diffusion MRI signal in the case of static organs. In the fourth chapter, the influence of cardiac motion on the diffusion MRI signal is investigated numerically by using the modified Bloch-Torrey equation and an analytical motion model mimicking a realistic deformation of the heart. The numerical study reported here, can quantify the effect of motion on the diffusion measurement depending on the type of the diffusion coding sequence. The results obtained allow us to classify the diffusion encoding sequences in terms of sensitivity to the cardiac motion and identify for each sequence a temporal window in the cardiac cycle in which the influence of motion is reduced. Finally, in the fifth chapter, a motion correction method is presented to minimize the effect of cardiac motion on the diffusion images. This method is based on a singular development of the modified Bloch-Torrey model in order to obtain an asymptotic model of ordinary differential equation that gives a relationship between the true diffusion and the diffusion reconstructed in the presence of motion. This relationship is then used to solve the inverse problem of recovery and correction of the diffusion influenced by the cardiac motion.
2

Sélection de variables pour la classification non supervisée en grande dimension / Variable selection in model-based clustering for high-dimensional data

Meynet, Caroline 09 November 2012 (has links)
Il existe des situations de modélisation statistique pour lesquelles le problème classique de classification non supervisée (c'est-à-dire sans information a priori sur la nature ou le nombre de classes à constituer) se double d'un problème d'identification des variables réellement pertinentes pour déterminer la classification. Cette problématique est d'autant plus essentielle que les données dites de grande dimension, comportant bien plus de variables que d'observations, se multiplient ces dernières années : données d'expression de gènes, classification de courbes... Nous proposons une procédure de sélection de variables pour la classification non supervisée adaptée aux problèmes de grande dimension. Nous envisageons une approche par modèles de mélange gaussien, ce qui nous permet de reformuler le problème de sélection des variables et du choix du nombre de classes en un problème global de sélection de modèle. Nous exploitons les propriétés de sélection de variables de la régularisation l1 pour construire efficacement, à partir des données, une collection de modèles qui reste de taille raisonnable même en grande dimension. Nous nous démarquons des procédures classiques de sélection de variables par régularisation l1 en ce qui concerne l'estimation des paramètres : dans chaque modèle, au lieu de considérer l'estimateur Lasso, nous calculons l'estimateur du maximum de vraisemblance. Ensuite, nous sélectionnons l'un des ces estimateurs du maximum de vraisemblance par un critère pénalisé non asymptotique basé sur l'heuristique de pente introduite par Birgé et Massart. D'un point de vue théorique, nous établissons un théorème de sélection de modèle pour l'estimation d'une densité par maximum de vraisemblance pour une collection aléatoire de modèles. Nous l'appliquons dans notre contexte pour trouver une forme de pénalité minimale pour notre critère pénalisé. D'un point de vue pratique, des simulations sont effectuées pour valider notre procédure, en particulier dans le cadre de la classification non supervisée de courbes. L'idée clé de notre procédure est de n'utiliser la régularisation l1 que pour constituer une collection restreinte de modèles et non pas aussi pour estimer les paramètres des modèles. Cette étape d'estimation est réalisée par maximum de vraisemblance. Cette procédure hybride nous est inspirée par une étude théorique menée dans une première partie dans laquelle nous établissons des inégalités oracle l1 pour le Lasso dans les cadres de régression gaussienne et de mélange de régressions gaussiennes, qui se démarquent des inégalités oracle l0 traditionnellement établies par leur absence totale d'hypothèse. / This thesis deals with variable selection for clustering. This problem has become all the more challenging since the recent increase in high-dimensional data where the number of variables can largely exceeds the number of observations (DNA analysis, functional data clustering...). We propose a variable selection procedure for clustering suited to high-dimensional contexts. We consider clustering based on finite Gaussian mixture models in order to recast both the variable selection and the choice of the number of clusters into a global model selection problem. We use the variable selection property of l1-regularization to build a data-driven model collection in a efficient way. Our procedure differs from classical procedures using l1-regularization as regards the estimation of the mixture parameters: in each model of the collection, rather than considering the Lasso estimator, we calculate the maximum likelihood estimator. Then, we select one of these maximum likelihood estimators by a non-asymptotic penalized criterion. From a theoretical viewpoint, we establish a model selection theorem for maximum likelihood estimators in a density estimation framework with a random model collection. We apply it in our context to determine a convenient penalty shape for our criterion. From a practical viewpoint, we carry out simulations to validate our procedure, for instance in the functional data clustering framework. The basic idea of our procedure, which consists in variable selection by l1-regularization but estimation by maximum likelihood estimators, comes from theoretical results we establish in the first part of this thesis: we provide l1-oracle inequalities for the Lasso in the regression framework, which are valid with no assumption at all contrary to the usual l0-oracle inequalities in the literature, thus suggesting a gap between l1-regularization and l0-regularization.
3

Contribution to a kernel of symbolic asymptotic modeling software. / Contribution au noyau d'un logiciel de modélisation asymptotique symbolique

Yang, Bin 16 December 2014 (has links)
Cette thèse est consacrée au développement d’un noyau du logiciel MEMSALab de modélisation parcalcul symbolique qui sera utilisé pour la génération automatique de modèles asymptotiques pourdes matrices de micro et nano-systèmes. Contrairement à des logiciels traditionnels réalisant des simulationsnumériques utilisant des modèles prédéfinis, le principe de fonctionnement de MEMSALabest de construire des modèles asymptotiques qui transforment des équations aux dérivées partiellesen tenant compte de leurs caractéristiques. Une méthode appelée ”par extension-combinaison” pourla modélisation asymptotique, qui permet la construction de modèle de façon incrémentale de sorteque les caractéristiques désirées soient incluses étape par étape est tout d’abord proposé pour lemodèle d’homogénéisation dérivation. Il repose sur une combinaison de méthodes asymptotiquesissues de la théorie des équations aux dérivés partielles et de techniques de réécriture issues del’informatique. Cette méthode concentre sur la dérivation de modèle pour les familles de PDEs aulieu de chacune d’entre elles. Un modèle d’homogénéisation de l’électro thermoélastique équationdéfinie dans un domaine mince multicouche est dérivé par utiliser la méthode mathématique danscette approche. Pour finir, un outil d’optimisation a été développé en combinant SIMBAD, une boite `aoutils logicielle pour l’optimisation et développée en interne, et COMSOL-MATLAB. Il a ´ et ´e appliquépour étudier la conception optimale d’une classe de sondes de microscopie atomique thermique et apermis d’ établir des règles générale pour leurs conception / This thesis is dedicated to develop a kernel of a symbolic asymptotic modeling software packageMEMSALab which will be used for automatic generation of asymptotic models for arrays of micro andnanosystems. Unlike traditional software packages aimed at numerical simulations by using pre-builtmodels, the purpose of MEMSALab is to derive asymptotic models for input equations by taking intoaccount their own features. An approach called ”by extension-combination” for the asymptotic modelingwhich allows an incremental model construction is firstly proposed for the homogenization modelderivation. It relies on a combination of the asymptotic method used in the field of partial differentialequations with term rewriting techniques coming from computer science. This approach focuses onthe model derivation for family of PDEs instead of each of them. An homogenization model of theelectrothermoelastic equation defined in a multi-layered thin domain has been derived by applyingthe mathematical method used in this approach. At last, an optimization tool has been developed bycombining a house-made optimization software package SIMBAD and COMSOL-MATLAB simulationand it has been applied for optimization of a SThM probe.

Page generated in 0.0625 seconds