• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 30
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 104
  • 104
  • 29
  • 29
  • 29
  • 24
  • 19
  • 17
  • 16
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mitigating Inconsistencies by Coupling Data Cleaning, Filtering, and Contextual Data Validation in Wireless Sensor Networks

Bakhtiar, Qutub A 26 March 2009 (has links)
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
12

Implementation of a low-cost bistatic radar

Sendall, Joshua Leigh January 2016 (has links)
Passive radar detects and ranges targets by receiving signals which are reflected off targets. Communication transmissions are generally used, however, theoretically any signal with a suitable ambiguity function may be used. The exploitation of an existing transmitter and the removal of emissions allow passive radars to act as a complementary sensor which is useful in environments where conventional active radar is not well suited. Such environments are in covert operations and in situations where a low cost or spectrally efficient solution is required. Most developed passive radars employ intensive signal processing and use application specific equipment to achieve detection. The high-end processors and receiver equipment, however, detract from some of the inherent advantages in the passive radar architecture. These include the lower cost and power requirements achieved by removing transmitter hardware. This study investigates the challenges faced when removing application-specific and high end components from the system and replacing them with low-cost alternatives. Solutions to these challenges are presented and validated by designing and evaluating a radar using these principles. It was found that the major limitation in passive radar is the dynamic range of the receiver. While processing the signals was, and is, a significant challenge, be implemented on a low-cost, low-power embedded processor. This was achieved by asserting a few limitations to the configuration, exploiting the subsequently generated redundancy, and taking advantage of the parallelism by using general purpose graphics processing.. Even on this processor, the system was able to run in real time and able to detect targets up to 91 km (bistatic range of 195 km) from the radar. / Dissertation (MEng)--University of Pretoria, 2016. / Electrical, Electronic and Computer Engineering / MEng / Unrestricted
13

Estimation of a wideband fading HF channel using modified adaptive filtering and center clipping techniques

Matherne, Marcus McLenn January 1994 (has links)
No description available.
14

Gyroscope Calibration and Dead Reckoning for an Autonomous Underwater Vehicle

Kapaldo, Aaron J. 25 August 2005 (has links)
Autonomous Underwater Vehicles (AUVs) are currently being used for many underwater tasks such as mapping underwater terrain, detection of underwater objects, and assessment of water quality. Possible uses continue to grow as the vehicles become smaller, more agile, and less expensive to operate. However, trade-offs exist between making less expensive, miniature AUVs and the quality at which they perform. One area affected by cost and size is the onboard navigation system. To achieve the challenges of low-cost rate sensors, this thesis examines calibration methods that are suitable for identifying calibration coefficients in low-cost MEMS gyros. A brief introduction to underwater navigation is presented and is followed by the development of a model to describe the operation of a rate gyro. The model uses the integral relationship between angular rate and angular position measurements. A compass and two tilt sensors provide calibrated angular position data against which the three single axis gyros are compared to obtain an error signal describing errors present in the angular rate measurements. A calibration routine that adaptively identifies error parameters in the gyros is developed. Update laws are chosen to recursively apply estimated error parameters to minimize the system error signal. Finally, this calibration method is applied to a simple dead reckoning algorithm in an attempt to measure the improvements calibration provides. / Master of Science
15

Development Towards the use of Beamforming and Adaptive Line Enhancers for Audio Detection of Quadcopters

Burns, Clinton Wyatt 08 August 2018 (has links)
The usage of Unmanned Aerial Systems (UASs), such as quadcopters and hexacopters, has steadily increased over the past few years in both recreational and commercial use. This increased availability to purchase such systems has also given rise to many safety and security concerns. A common concern is that the misuse of a UAS can cause damage to airplanes and helicopters in and around airports. Another growing concern is the use of UASs for terrorist intentions such as using the UAS as a remote controlled bomb. There is clearly a need to be able to detect the presence of unwanted UASs in restricted areas. This thesis work presents the beginning work towards a method to detect the presence of these UASs using the blade pass frequency (BPF) of the motors and rotors of a home made quadcopter. A low cost uniform linear microphone array is first used to perform a simple delay-and-sum beamformer to spatially filter out noise sources. The beamformer output is then divided into sub-bands using three bandpass filters centered on the expected location of the fundamental BPF and its 2nd and 3rd harmonics. For each sub-band, an adaptive filter called an adaptive line enhancer is used to extract and enhance the narrowband signals. The response of the adaptive filters are then used to detect the quadcopter by looking for the presence of the 2nd and 3rd harmonics of the fundamental BPF. Static tests of the quadcopter out in a field showed promising results for this method with the ability to detect up to the 3rd harmonic 90ft away and the 2nd harmonic 130 ft away. / Master of Science / The usage of Unmanned Aerial Systems (UASs), such as quadcopters and hexacopters, has steadily increased over the past few years in both recreational and commercial use. This increased availability to purchase such systems has also given rise to many safety and security concerns. A common concern is that the misuse of a UAS can cause damage to airplanes and helicopters in and around airports. Another growing concern is the use of UASs for terrorist intentions such as using the UAS as a remote controlled bomb. There is clearly a need to be able to detect the presence of unwanted UASs in restricted areas. This thesis work presents the beginning work towards a method to detect the presence of a home made quadcopter based on the sound it produces. A series of microphone are first used to remove surrounding sounds that could interfere with the quadcopter’s sound. The output of this processes is then divided into smaller sections using three filters centered on the expected location of the most important and information rich parts of the quadcopter’s sound. For each section, a final filter is used to extract and enhance the signals of interest produced by the quadcopter. The response of these filters are then used to detect whether the quadcopter is present or not. Static tests of the quadcopter out in a field showed promising results for this method with the ability to detect the quadcopter 90 to 130 ft away.
16

Development of an Adaptive Equalization Algorithm Using Acoustic Energy Density

Puikkonen, Panu Tapani 21 April 2009 (has links) (PDF)
Sound pressure equalization of audio signals using digital signal processors has been a subject of ongoing study for many years. The traditional approach is to equalize sound at a point in a listening environment, but because of its specific dependence on the room frequency response between a source and receiver position, this equalization generally causes the spectral response to worsen significantly at other locations in the room. This work presents both a time-invariant and a time-varying implementation of an adaptive acoustic energy density equalization filter for a one-dimensional sound field. Energy density equalization addresses the aforementioned challenge and others that relate to sound equalization. The theory and real-time implementation of time-invariant sound pressure and energy density equalizers designed using the least-squares method are presented, and their performances are compared. An implementation of a time-varying energy density equalizer is also presented. Time-invariant equalization results based on real-time measurements in a plane-wave tube are presented. A sound pressure equalizer results in a nearly flat spectral magnitude at the point of equalization. However, it causes the frequencies corresponding to spatial nulls at that point to be undesirably boosted elsewhere in the sound field, where those nulls do not exist at the same frequencies. An energy density equalization filter identifies and compensates for all resonances and other global spectral effects of the tube and loudspeaker. It does not attempt to equalize the spatially varying frequency nulls caused by local pressure nodes at the point of equalization. An implementation of a time-varying energy density equalizer is also presented. This method uses the filtered-x filter update to adjust the filter coefficients in real-time to adapt to changes in the sound field. Convergence of the filter over time is demonstrated as the closed end of the tube is opened, then closed once again. Thus, the research results demonstrate that an acoustic energy density filter can be used to time-adaptively equalize global spectral anomalies of a loudspeaker and a one-dimensional sound field.
17

Joint Preprocesser-Based Detectors for One-Way and Two-Way Cooperative Communication Networks

Abuzaid, Abdulrahman I. 05 1900 (has links)
Efficient receiver designs for cooperative communication networks are becoming increasingly important. In previous work, cooperative networks communicated with the use of L relays. As the receiver is constrained, channel shortening and reduced-rank techniques were employed to design the preprocessing matrix that reduces the length of the received vector from L to U. In the first part of the work, a receiver structure is proposed which combines our proposed threshold selection criteria with the joint iterative optimization (JIO) algorithm that is based on the mean square error (MSE). Our receiver assists in determining the optimal U. Furthermore, this receiver provides the freedom to choose U for each frame depending on the tolerable difference allowed for MSE. Our study and simulation results show that by choosing an appropriate threshold, it is possible to gain in terms of complexity savings while having no or minimal effect on the BER performance of the system. Furthermore, the effect of channel estimation on the performance of the cooperative system is investigated. In the second part of the work, a joint preprocessor-based detector for cooperative communication networks is proposed for one-way and two-way relaying. This joint preprocessor-based detector operates on the principles of minimizing the symbol error rate (SER) instead of minimizing MSE. For a realistic assessment, pilot symbols are used to estimate the channel. From our simulations, it can be observed that our proposed detector achieves the same SER performance as that of the maximum likelihood (ML) detector with all participating relays. Additionally, our detector outperforms selection combining (SC), channel shortening (CS) scheme and reduced-rank techniques when using the same U. Finally, our proposed scheme has the lowest computational complexity.
18

Data Filtering and Control Design for Mobile Robots

Karasalo, Maja January 2009 (has links)
In this thesis, we consider problems connected to navigation and tracking for autonomousrobots under the assumption of constraints on sensors and kinematics. We study formation controlas well as techniques for filtering and smoothing of noise contaminated input. The scientific contributions of the thesis comprise five papers.In Paper A, we propose three cascaded, stabilizing formation controls for multi-agent systems.We consider platforms with non-holonomic kinematic constraints and directional rangesensors. The resulting formation is a leader-follower system, where each follower agent tracksits leader agent at a specified angle and distance. No inter-agent communication is required toexecute the controls. A switching Kalman filter is introduced for active sensing, and robustnessis demonstrated in experiments and simulations with Khepera II robots.In Paper B, an optimization-based adaptive Kalman filteringmethod is proposed. The methodproduces an estimate of the process noise covariance matrix Q by solving an optimization problemover a short window of data. The algorithm recovers the observations h(x) from a system˙ x = f (x), y = h(x)+v without a priori knowledge of system dynamics. The algorithm is evaluatedin simulations and a tracking example is included, for a target with coupled and nonlinearkinematics. In Paper C, we consider the problem of estimating a closed curve in R2 based on noisecontaminated samples. A recursive control theoretic smoothing spline approach is proposed, thatyields an initial estimate of the curve and subsequently computes refinements of the estimateiteratively. Periodic splines are generated by minimizing a cost function subject to constraintsimposed by a linear control system. The optimal control problem is shown to be proper, andsufficient optimality conditions are derived for a special case of the problem using Hamilton-Jacobi-Bellman theory.Paper D continues the study of recursive control theoretic smoothing splines. A discretizationof the problem is derived, yielding an unconstrained quadratic programming problem. Aproof of convexity for the discretized problem is provided, and the recursive algorithm is evaluatedin simulations and experiments using a SICK laser scanner mounted on a PowerBot from ActivMedia Robotics. Finally, in Paper E we explore the issue of optimal smoothing for control theoretic smoothingsplines. The output of the control theoretic smoothing spline problem is essentially a tradeoff between faithfulness to measurement data and smoothness. This tradeoff is regulated by the socalled smoothing parameter. In Paper E, a method is developed for estimating the optimal valueof this smoothing parameter. The procedure is based on general cross validation and requires noa priori information about the underlying curve or level of noise in the measurements. / QC 20100722
19

Real-Time View-Interpolation System for Super Multi-View 3D Display

HONDA, Toshio, FUJII, Toshiaki, HAMAGUCHI, Tadahiko 01 January 2003 (has links)
No description available.
20

Enhancement and Visualization of VascularStructures in MRA Images Using Local Structure

Esmaeili, Morteza January 2010 (has links)
The novel method of this thesis work is based on using quadrature filters to estimate an orientation tensor and to use the advantage of tensor information to control 3D adaptive filters. The adaptive filters are applied to enhance the Magnetic Resonance Angiography (MRA) images. The tubular structures are extracted from the volume dataset by using the quadrature filters. The idea of developing adaptive filtering in this thesis work is to enhance the volume dataset and suppress the image noise. Then the output of the adaptive filtering can be a clean dataset for segmentation of blood vessel structures to get appropriate volume visualization. The local tensors are used to create the control tensor which is used to control adaptive filters. By evaluation of the tensor eigenvalues combination, the local structures like tubular structures and stenosis structures are extracted from the dataset. The method has been evaluated with synthetic objects, which are vessel models (for segmentation), and onion like synthetic object (for enhancement). The experimental results are shown on clinical images to validate the proposed method as well.

Page generated in 0.1046 seconds