• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 21
  • 12
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 191
  • 191
  • 40
  • 38
  • 33
  • 32
  • 32
  • 29
  • 27
  • 21
  • 20
  • 18
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The path to visible extreme adaptive optics with MagAO-2K and MagAO-X

Males, Jared R., Close, Laird M., Guyon, Olivier, Morzinski, Katie M., Hinz, Philip, Esposito, Simone, Pinna, Enrico, Xompero, Marco, Briguglio, Runa, Riccardi, Armando, Puglisi, Alfio, Mazin, Ben, Ireland, Michael J., Weinberger, Alycia, Conrad, Al, Kenworthy, Matthew, Snik, Frans, Otten, Gilles, Jovanovic, Nemanja, Lozi, Julien 27 July 2016 (has links)
The next generation of extremely large telescopes (ELTs) have the potential to image habitable rocky planets, if suitably optimized. This will require the development of fast high order "extreme" adaptive optics systems for the ELTs. Located near the excellent site of the future GMT, the Magellan AO system (MagAO) is an ideal on-sky testbed for high contrast imaging development. Here we discuss planned upgrades to MagAO. These include improvements in WFS sampling (enabling correction of more modes) and an increase in speed to 2000 Hz, as well as an H2RG detector upgrade for the Clio infrared camera. This NSF funded project, MagAO-2K, is planned to be on-sky in November 2016 and will significantly improve the performance of MagAO at short wavelengths. Finally, we describe MagAO-X, a visible-wavelength extreme-AO "afterburner" system under development. MagAO-X will deliver Strehl ratios of over 80% in the optical and is optimized for visible light coronagraphy.
22

Exoplanet imaging speckle subtraction: current limitations and a path forward

Gerard, Benjamin Lionel 20 May 2020 (has links)
The direct detection and detailed characterization of exoplanets using extreme adaptive optics (ExAO) is a key science case of both current and future telescopes. However, both quasi-static and residual atmospheric wavefront errors currently limit the sensitivity of this endeavour, generating “speckles” in a coronagraphic image that initially obscure any faint exoplanet(s) from detection. I first demonstrate the current limits of exoplanet imaging using datasets taken with the Gemini Planet Imager and Subaru Coronagraphic ExAO systems. Even when using advanced post-processing algorithms, speckle evolution over time and wavelength is shown to limit the final contrasts that can be reached with current state- of-the-art instruments. A new approach is thus needed to detect fainter exoplanets below these limits. I then illustrate a path forward to reach contrasts near the fundamental photon noise limit: fast focal plane wavefront sensing of both quasi-static and atmospheric speckles. My new method, called the Fast Atmospheric Self-coherent camera Technique (FAST), deploys new hardware and software to overcome these limitations. Looking toward the future, the contrast improvements from fast focal plane wave- front sensing techniques such as FAST are expected to play an essential role in the ground-based detection and characterization of lower mass exoplanets. / Graduate
23

Reinforcement Learning Application in Wavefront Sensorless Adaptive Optics System

Zou, Runnan 13 February 2024 (has links)
With the increasing exploration of space and widespread use of communication tools worldwide, near-ground satellite communication has emerged as a promising tool in various fields such as aerospace, military, and microscopy. However, the presence of air and water in the atmosphere causes distortion in the light signal, and thus, it is essential for the ground base to retrieve the original signal from the distorted light signal sent from the satellite. Traditionally, Shack-Hartmann sensors or charge-coupled devices are integrated in the system for distortion measurement. In our pursuit of a cost-effective system establishment with optimal performance and enhanced response speed, sensors and charge-coupled devices have been replaced by a photodiode and a single mode fiber in this project. Since the system has limited observation capability, it requires a powerful controller for optimal performance. To address this issue, we have implemented an off-policy reinforcement learning framework, the soft actor-critic, in the adaptive optics system controller. This integration results in a model-free online controller capable of mitigating wavefront distortion. The soft actor-critic controller processes the acquired data matrix from the photodiode and generates a two-dimensional array control signal for the deformable mirror, which corrects the wavefront distortion induced by the atmosphere, and refocusing the signal to maximize the incoming power. The parameters of the soft actor-critic controller have been tuned to achieve optimal system performance. Simulations have been conducted to compare the performance of the proposed controller with respect to wavefront sensor-based methods. The training and verification of the proposed controller have been conducted in both static and semi-dynamic atmospheres, under different atmospheric conditions. Simulation results demonstrate that, in severe atmospheric conditions, the adaptive optics system with the soft actor-critic controller achieves more than 55% and 30% Strehl ratio on average in static and semi-dynamic atmospheres, respectively. Furthermore, the distorted wavefront's power can be concentrated at the center of the focal plane and the fiber, providing an improved signal.
24

Dynamics and Control of Membrane Mirrors for Adaptive Optic Applications

Renno, Jamil M. 19 September 2008 (has links)
Current and future space exploration operations rely heavily on space-borne telescopes, of which mirrors are an integral component. However, traditional solid mirrors are heavy and require a big storage space. Deploying membrane mirrors can alleviate many of these obstacles. Membrane mirrors are light and can be compactly stowed resulting in cheap launching costs. It was also demonstrated that membrane mirror would provide quality optical imaging capabilities. However, membrane mirrors exhibit undesirable vibrations that can be caused by thermal gradients or internally-induced excitations. The undesirable vibration degrades the performance of these mirrors. Hence, it is proposed to augment membrane mirrors with smart actuators around their outer rim. Smart actuators can be used to suppress the undesirable vibration. More importantly, such a system provide the capability to form appropriate surfaces to correct for aberrations in an incoming wavefront. In this spirit, this work aims at modeling and control a membrane mirror augmented with smart actuators. The approach here to consider a membrane strip augmented with smart actuators as a prelude for studying circular membranes. We consider strips of membrane material, and treat two such structures: a membrane strip augmented with a single piezoceramic bimorph acting in bending, and a membrane strip augmented with multiple macro-fiber composite bimorphs. The later structure is studied under two actuation configurations. In the first configuration, both actuators act in bending. In the other configuration, one actuator acts in bending and the second acts in tension. The developed models of both structures were validated experimentally. Then, control laws were derived for both structures. An optimal proportional-integral controller is used for the membrane strip augmented with a single piezoceramic bimorph. For the membrane strip augmented with two macro-fiber composite bimorphs, a sliding mode controller with a switching command is used. Simulation results are presented to demonstrate the efficacy of the proposed control laws. Then, a circular membrane augmented with macro-fiber composite bimorph actuators is considered. We derive the governing equation of the structure for the general configuration, where actuators are producing bending moments and radial loading. Then, we seek a reduced order model of the structure. We work on obtaining a Galerkin expansion of the model where the test functions used are the mode shapes of the structure as obtained from a finite element analysis conducted in a commercial software package. Then the control problem is considered. The objective is to correct for optical aberrations, so the Zernike polynomial basis functions are used. A transformation from the optical modes to the mechanical modes is presented and an augmented adaptive controller is used to correct for image aberrations. The results presented show the efficacy of the controller. / Ph. D.
25

Adaptive Optics With Segmented Deformable Bimorph Mirrors

Mendes da Costa Rodrigues, Gonçalo 25 February 2010 (has links)
The degradation of astronomical images caused by atmospheric turbulence will be much more severe in the next generation of terrestrial telescopes and its compensation will require deformable mirrors with up to tens-of-thousands of actuators. Current designs for these correctors consist of scaling up the proven technologies of flexible optical plates deformed under the out-of-plane action of linear actuators. This approach will lead to an exponential growth of cost with the number of actuators, and in very complex mechanisms. This thesis proposes a new concept of optical correction which is modular, robust, lightweight and low-cost and is based on the bimorph in-plane actuation. The adaptive mirror consists of segmented identical hexagonal bimorph mirrors allowing to indefinitely increase the degree of correction while maintaining the first mechanical resonance at the level of a single segment and showing an increase in price only proportional to the number of segments. Each bimorph segment can be mass-produced by simply screen-printing an array of thin piezoelectric patches onto a silicon wafer resulting in very compact and lightweight modules and at a price essentially independent from the number of actuators. The controlled deformation of a screen-printed bimorph mirror was experimentally achieved with meaningful optical shapes and appropriate amplitudes; its capability for compensating turbulence was evaluated numerically. The generation of continuous surfaces by an assembly of these mirrors was numerically simulated and a demonstrator of concept consisting of 3 segments was constructed.
26

Modelling MEMS deformable mirrors for astronomical adaptive optics

Blain, Celia 14 January 2013 (has links)
As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full on-axis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024-actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for both wavefront sensing and correction. In this scheme, the DM is used to introduce known aberrations (speckles in the focal plane), which interfere with existing speckles. By monitoring the interference between the pre-existing speckles and the speckles added deliberately by the DM, it is possible to reconstruct the complex amplitude (amplitude and phase) of the focal plane speckles. Thus, the DM is used for wavefront sensing, in a scheme akin to phase diversity. For SCExAO and other HCI systems using phase diversity, the wavefront compensation is a mix of closed-loop and open-loop control of the DM. The successful implementation of MEMS DMs open-loop control relies on a thorough modelling of the DM response to the control system commands. The work presented in this thesis, motivated by the need to provide accurate DM control for the wavefront control system of SCExAO, was centred around the development of MEMS DM models. This dissertation reports the characterization of MEMS DMs and the development of two efficient modelling approaches. The open-loop performance of both approaches has been investigated. The model providing the best result has been implemented within the SCExAO wavefront control software. Within SCExAO, the model was used to command the DM to create focal plane speckles. The work is now focused on using the model within a full speckle nulling process and on increasing the execution speed to make the model suitable for on-sky operation. / Graduate
27

Evaluation of Foveal Cone and M?ller Cells in Epiretinal Membrane using Adaptive Optics OCT / 補償光学適用光干渉断層計を用いた黄斑上膜における錐体細胞とミュラー細胞の形態評価

Ishikura, Masaharu 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第25171号 / 医博第5057号 / 新制||医||1071(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 花川 隆, 教授 林 康紀, 教授 高橋 淳 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
28

Adaptive optics capabilities at the Large Binocular Telescope Observatory

Christou, J. C., Brusa, G., Conrad, A., Esposito, S., Herbst, T., Hinz, P., Hill, J. M., Miller, D. L., Rabien, S., Rahmer, G., Taylor, G. E., Veillet, C., Zhang, X. 26 July 2016 (has links)
We present an overview of the current and future adaptive optics systems at the LBTO along with the current and planned science instruments they feed. All the AO systems make use of the two 672 actuator adaptive secondary mirrors. They are (1) FLAO (NGS/SCAO) feeding the LUCI NIR imagers/spectrographs; (2) LBTI/AO (NGS/SCAO) feeding the NIR/MIR imagers and LBTI beam combiner; (3) the ARGOS LGS GLAO system feeding LUCIs; and (4) LINO-NIRVANA - an NGS/MCAO imager and interferometer system. AO performance of the current systems is presented along with proposed performances for the newer systems taking into account the future instrumentation.
29

NCPA Optimizations at Gemini North Using Focal Plane Sharpening

Ball, Jesse Grant January 2016 (has links)
Non-common path aberrations (NCPA) in an adaptive optics system are static aberrations that appear due to the difference in optical path between light arriving at the wavefront sensor (WFS) and at the science detector. If the adaptive optics are calibrated to output an unaberrated wavefront, then any optics outside the path of the light arriving at the WFS inherently introduce aberrations to this corrected wavefront. NCPA corrections calibrate the adaptive optics system such that it outputs a wavefront that is inverse in phase to the aberrations introduced by these non-common path optics, and therefore arrives unaberrated at the science detector, rather than at the output of the corrective elements. Focal plane sharpening (FPS) is one technique used to calibrate for NCPA in adaptive optics systems. Small changes in shape to the deformable element(s) are implemented and images are taken and analyzed for image quality (IQ) on the science detector. This process is iterated until the image quality is maximized and hence the NCPA are corrected. The work carried out as described in this paper employs two FPS techniques at Gemini North to attempt to mitigate up to 33% of the adaptive optics performance and image quality degradations currently under investigation. Changes in the NCPA correction are made by varying the Zernike polynomial coefficients in the closed-loop correction file for Altair (the facility adaptive optics system). As these coefficients are varied during closed-loop operation, a calibration point-source at the focal plane of the telescope is imaged through Altair and NIRI (the facility near-infrared imager) at f/32 in K-prime (2.12 μm). These images are analyzed to determine the Strehl ratio, and a parabolic fit is used to determine the appropriate coefficient correction that maximizes the Strehl ratio. Historic calibrations of the NCPA file in Altair's control loop were done at night on a celestial point source, and used a separate, high-resolution WFS (with its own inherent aberrations not common to either NIRI nor Altair) to measure phase corrections directly. In this paper it is shown that using FPS on a calibration source negates both the need to use costly time on the night sky and the use of separate optical systems (which introduce their own NCPA) for analysis. An increase of 6% in Strehl ratio is achieved (an improvement over current NCPA corrections of 11%), and discussions of future improvements and extensions of the technique is presented. Furthermore, a potentially unknown problem is uncovered in the form of high spatial frequency degradation in the PSF of the calibration source.
30

Investigation of alternative pyramid wavefront sensors

van Kooten, Maaike 20 July 2016 (has links)
A pyramid wavefront sensor (PWFS) bench has been setup at the National Research Council-Herzberg (Victoria, Canada) to investigate: the feasibility of a lenslet based PWFS and a double roof prism based PWFS as alternatives to a classical PWFS, as well as to test the proposed methodology for pyramid wavefront sensing to be used in NFIRAOS for the Thirty Meter Telescope (TMT). Traditional PWFS require shallow angles and strict apex tolerances, making them difficult to manufacture. Lenslet arrays, on the other hand, are common optical components that can be made to the desired specifications, thus making them readily available. A double roof prism pyramid, also readily available, has been shown to optically equivalent by optical designers. Characterizing these alternative pyramids, and understanding how they differ from a traditional pyramid will allow for the PWFS to become more widely used, especially in the laboratory setting. In this work, the response of the SUSS microOptics 300-4.7 array and two ios Optics roof prisms are compared to a double PWFS as well as an idealized PWFS. The evolution of the modulation and dithering hardware, the system control configuration, and the relationship between this system and NFIRAOS are also explored. / Graduate

Page generated in 0.0663 seconds