• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 21
  • 12
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 191
  • 191
  • 40
  • 38
  • 33
  • 32
  • 32
  • 29
  • 27
  • 21
  • 20
  • 18
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Planets Around Solar-Type Stars: Methods for Detection and Constraints on their Distribution from an L' and M Band Adaptive Optics Survey

Heinze, Aren Nathaniel January 2007 (has links)
We have attempted adaptive optics (AO) imaging of planets around nearby stars in the L' and M bands, using the Clio instrument on the MMT. The MMT AO system, with its deformable secondary mirror, offers uniquely low background AO-corrected images in these bands. This allowed us to explore a wavelength regime that has not been well utilized in searches for extrasolar planets, but offers some advantages over the more commonly used shorter-wavelength H band regime. We have taken deep L' and M band images of the interesting debris disk stars Vega and ϵ Eri. Our observations of ϵ Eri attain better sensitivity to low mass planets within 3 arcseconds of the star than any other AO observations to date. At 1.7 arcsec, the maximum separation of the known planet ϵ Eri b, our M band sensitivity corresponds to objects only 9-16 times brighter than the predicted brightness of this planet. M is by far the most promising band for directly imaging this planet for the first time, though Clio would require a multi-night integration. We have carried out a survey of 50 nearby stars, using mostly the L' band. The survey objective was to determine whether power law fits to the statistics of planet mass m and orbital semimajor axis a from radial velocity (RV) surveys apply when extrapolated to orbital radii beyond the outer limits of RV sensitivity. Given dN/dm ~ m^{-1.44}, our survey null result rules out dN/da ~ a^{-0.2} extending beyond 155 AU, or dN/da constant extending beyond 70 AU, at the 95% confidence level. We have not placed as tight constraints on the planet distributions as the best H band surveys. However, we have probed older planet populations and by using a different wavelength regime have helped diversify results against model uncertainties. We have developed careful and well-tested observing, image processing, sensitivity analysis, and source detection methods, and helped advance L' and M band AO astronomy. These wavelengths will become increasingly important with the advent of new giant telescopes sensitive to interesting, low-temperature planets with red H-L' and H-M colors.
32

1–2.4 μm Near-IR Spectrum of the Giant Planet β Pictoris b Obtained with the Gemini Planet Imager

Chilcote, Jeffrey, Pueyo, Laurent, Rosa, Robert J. De, Vargas, Jeffrey, Macintosh, Bruce, Bailey, Vanessa P., Barman, Travis, Bauman, Brian, Bruzzone, Sebastian, Bulger, Joanna, Burrows, Adam S., Cardwell, Andrew, Chen, Christine H., Cotten, Tara, Dillon, Daren, Doyon, Rene, Draper, Zachary H., Duchêne, Gaspard, Dunn, Jennifer, Erikson, Darren, Fitzgerald, Michael P., Follette, Katherine B., Gavel, Donald, Goodsell, Stephen J., Graham, James R., Greenbaum, Alexandra Z., Hartung, Markus, Hibon, Pascale, Hung, Li-Wei, Ingraham, Patrick, Kalas, Paul, Konopacky, Quinn, Larkin, James E., Maire, Jérôme, Marchis, Franck, Marley, Mark S., Marois, Christian, Metchev, Stanimir, Millar-Blanchaer, Maxwell A., Morzinski, Katie M., Nielsen, Eric L., Norton, Andrew, Oppenheimer, Rebecca, Palmer, David, Patience, Jennifer, Perrin, Marshall, Poyneer, Lisa, Rajan, Abhijith, Rameau, Julien, Rantakyrö, Fredrik T., Sadakuni, Naru, Saddlemyer, Leslie, Savransky, Dmitry, Schneider, Adam C., Serio, Andrew, Sivaramakrishnan, Anand, Song, Inseok, Soummer, Remi, Thomas, Sandrine, Wallace, J. Kent, Wang, Jason J., Ward-Duong, Kimberly, Wiktorowicz, Sloane, Wolff, Schuyler 28 March 2017 (has links)
Using the Gemini Planet Imager located at Gemini South, we measured the near-infrared (1.0-2.4 mu m) spectrum of the planetary companion to the nearby, young star beta. Pictoris. We compare the spectrum obtained with currently published model grids and with known substellar objects and present the best matching models as well as the best matching observed objects. Comparing the empirical measurement of the bolometric luminosity to evolutionary models, we find a mass of 12.9. +/- 0.2. M-Jup, an effective temperature of 1724. +/- 15 K, a radius of 1.46. +/- 0.01. R-Jup, and a surface gravity of log g = 4.18. 0.01 [dex] (cgs). The stated uncertainties are statistical errors only, and do not incorporate any uncertainty on the evolutionary models. Using atmospheric models, we find an effective temperature of 1700-1800 K and a surface gravity of log g = 3.5-4.0 [dex] depending upon the model. These values agree well with other publications and with "hot-start" predictions from planetary evolution models. Further, we find that the spectrum of beta Pic. b best matches a low surface gravity L2. +/- 1 brown dwarf. Finally, comparing the spectrum to field brown dwarfs, we find the the spectrum best matches 2MASS J04062677- 381210 and 2MASS J03552337 + 1133437.
33

A High-precision Technique to Correct for Residual Atmospheric Dispersion in High-contrast Imaging Systems

Pathak, P., Guyon, O., Jovanovic, N., Lozi, J., Martinache, F., Minowa, Y., Kudo, T., Takami, H., Hayano, Y., Narita, N. 01 December 2016 (has links)
Direct detection and spectroscopy of exoplanets requires high-contrast imaging. For habitable exoplanets in particular, located at a small angular separation from the host star, it is crucial to employ small inner working angle (IWA) coronagraphs that efficiently suppress starlight. These coronagraphs, in turn, require careful control of the wavefront that directly impacts their performance. For ground-based telescopes, atmospheric refraction is also an important factor, since it results in a smearing of the point-spread function (PSF), that can no longer be efficiently suppressed by the coronagraph. Traditionally, atmospheric refraction is compensated for by an atmospheric dispersion compensator (ADC). ADC control relies on an a priori model of the atmosphere whose parameters are solely based on the pointing of the telescope, which can result in imperfect compensation. For a high-contrast instrument like the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system, which employs very small IWA coronagraphs, refraction-induced smearing of the PSF has to be less than 1 mas in the science band for optimum performance. In this paper, we present the first on-sky measurement and correction of residual atmospheric dispersion. Atmospheric dispersion is measured from the science image directly, using an adaptive grid of artificially introduced speckles as a diagnostic to feedback to the telescope's ADC. With our current setup, we were able to reduce the initial residual atmospheric dispersion from 18.8 mas to 4.2 in broadband light (y- to H-band) and to 1.4 mas in the H-band only. This work is particularly relevant to the upcoming extremely large telescopes (ELTs) that will require fine control of their ADC to reach their full high-contrast imaging potential.
34

Daylight operation of a sodium laser guide star for adaptive optics wavefront sensing

Hart, Michael, Jefferies, Stuart M., Murphy, Neil 26 October 2016 (has links)
We report contrast measurements of a sodium resonance guide star against the daylight sky when observed through a tuned magneto-optical filter (MOF). The guide star was created by projection of a laser beam at 589.16 nm into the mesospheric sodium layer and the observations were made with a collocated 1.5-m telescope. While MOFs are used with sodium light detecting and ranging systems during the day to improve the signalto- noise ratio of the measurements, they have not so far been employed with laser guide stars to drive adaptive optics (AO) systems to correct atmospherically induced image blur. We interpret our results in terms of the performance of AO systems for astronomy, with particular emphasis on thermal infrared observations at the next generation of extremely large telescopes now being built. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
35

iLocater: a diffraction-limited Doppler spectrometer for the Large Binocular Telescope

Crepp, Justin R., Crass, Jonathan, King, David, Bechter, Andrew, Bechter, Eric, Ketterer, Ryan, Reynolds, Robert, Hinz, Philip, Kopon, Derek, Cavalieri, David, Fantano, Louis, Koca, Corina, Onuma, Eleanya, Stapelfeldt, Karl, Thomes, Joseph, Wall, Sheila, Macenka, Steven, McGuire, James, Korniski, Ronald, Zugby, Leonard, Eisner, Joshua, Gaudi, B S., Hearty, Fred, Kratter, Kaitlin, Kuchner, Marc, Micela, Giusi, Nelson, Matthew, Pagano, Isabella, Quirrenbach, Andreas, Schwab, Christian, Skrutskie, Michael, Sozzetti, Alessandro, Woodward, Charles, Zhao, Bo 04 August 2016 (has links)
We are developing a stable and precise spectrograph for the Large Binocular Telescope (LBT) named "iLocater." The instrument comprises three principal components: a cross-dispersed echelle spectrograph that operates in the YJ-bands (0.97-1.30 mu m), a fiber-injection acquisition camera system, and a wavelength calibration unit. iLocater will deliver high spectral resolution (R similar to 150,000-240,000) measurements that permit novel studies of stellar and substellar objects in the solar neighborhood including extrasolar planets. Unlike previous planet-finding instruments, which are seeing-limited, iLocater operates at the diffraction limit and uses single mode fibers to eliminate the effects of modal noise entirely. By receiving starlight from two 8.4m diameter telescopes that each use "extreme" adaptive optics (AO), iLocater shows promise to overcome the limitations that prevent existing instruments from generating sub-meter-per-second radial velocity (RV) precision. Although optimized for the characterization of low-mass planets using the Doppler technique, iLocater will also advance areas of research that involve crowded fields, line-blanketing, and weak absorption lines.
36

Development and Verification of the non-linear Curvature Wavefront Sensor

Mateen, Mala January 2015 (has links)
Adaptive optics (AO) systems have become an essential part of ground-based telescopes and enable diffraction-limited imaging at near-IR and mid-IR wavelengths. For several key science applications the required wavefront quality is higher than what current systems can deliver. For instance obtaining high quality diffraction-limited images at visible wavelengths requires residual wavefront errors to be well below 100 nm RMS. High contrast imaging of exoplanets and disks around nearby stars requires high accuracy control of low-order modes that dominate atmospheric turbulence and scatter light at small angles where exoplanets are likely to be found. Imaging planets using a high contrast corona graphic camera, as is the case for the Spectro-Polarimetric High-contrast Exoplanet Research (SPHERE) on the Very Large Telescope (VLT), and the Gemini Planet Imager (GPI), requires even greater wavefront control accuracy. My dissertation develops a highly sensitive non-linear Curvature Wavefront Sensor (nlCWFS) that can deliver diffraction-limited (λ/D) images, in the visible, by approaching the theoretical sensitivity limit imposed by fundamental physics. The nlCWFS is derived from the successful curvature wavefront sensing concept but uses a non-linear reconstructor in order to maintain sensitivity to low spatial frequencies. The nlCWFS sensitivity makes it optimal for extreme AO and visible AO systems because it utilizes the full spatial coherence of the pupil plane as opposed to conventional sensors such as the Shack-Hartmann Wavefront Sensor (SHWFS) which operate at the atmospheric seeing limit (λ/r₀). The difference is equivalent to a gain of (D/r₀)² in sensitivity, for the lowest order mode, which translates to the nlCWFS requiring that many fewer photons. When background limited the nlCWFS sensitivity scales as D⁴, a combination of D² gain due to the diffraction limit and D² gain due to telescope's collecting power. Whereas conventional wavefront sensors only benefit from the D² gain due to the telescope's collecting power. For a 6.5 m telescope, at 0.5 μm, and seeing of 0.5", the nlCWFS can deliver for low order modes the same wavefront measurement accuracy as the SHWFS with 1000 times fewer photons. This is especially significant for upcoming extremely large telescopes such as the Giant Magellan Telescope (GMT) which has a 25.4 m aperture, the Thirty Meter Telescope (TMT) and the European Extremely Large Telescope (E-ELT) which has a 39 m aperture.
37

Application of Fluidic Lens Technology to an Adaptive Holographic Optical Element See-Through Auto-Phoropter

Chancy, Carl Henri January 2014 (has links)
A device for performing an objective eye exam has been developed to automatically determine ophthalmic prescriptions. The closed loop fluidic auto-phoropter has been designed, modeled, fabricated and tested for the automatic measurement and correction of a patient's prescriptions. The adaptive phoropter is designed through the combination of a spherical-powered fluidic lens and two cylindrical fluidic lenses that are orientated 45° relative to each other. In addition, the system incorporates Shack-Hartmann wavefront sensing technology to identify the eye's wavefront error and corresponding prescription. Using the wavefront error information, the fluidic auto-phoropter nulls the eye's lower order wavefront error by applying the appropriate volumes to the fluidic lenses. The combination of the Shack-Hartmann wavefront sensor the fluidic auto-phoropter allows for the identification and control of spherical refractive error, as well as cylinder error and axis; thus, creating a truly automated refractometer and corrective system. The fluidic auto-phoropter is capable of correcting defocus error ranging from −20D to 20D and astigmatism from −10D to 10D. The transmissive see-through design allows for the observation of natural scenes through the system at varying object planes with no additional imaging optics in the patient's line of sight. In this research, two generations of the fluidic auto-phoropter are designed and tested; the first generation uses traditional glass optics for the measurement channel. The second generation of the fluidic auto-phoropter takes advantage of the progress in the development of holographic optical elements (HOEs) to replace all the traditional glass optics. The addition of the HOEs has enabled the development of a more compact, inexpensive and easily reproducible system without compromising its performance. Additionally, the fluidic lenses were tested during a National Aeronautics Space Administration (NASA) parabolic flight campaign, to determine the effect of varying gravitational acceleration on the performance and image quality of the fluidic lenses. Wavefront analysis has indicated that flight turbulence and the varying levels of gravitational acceleration ranging from zero-G (microgravity) to 2G (hypergravity) had minimal effect on the performance of the fluidic lenses, except for small changes in defocus; making them suitable for potential use in a portable space-based fluidic auto-phoropter.
38

Astronomical Adaptive Optics using Multiple Laser Guide Stars

Baranec, Christoph James January 2007 (has links)
Over the past several years, experiments in adaptive optics involving multiple natural and laser guide stars have been carried out at the 1.55 m Kuiper telescope and the 6.5 m MMT telescope. The astronomical imaging improvement anticipated from both ground-layer and tomographic adaptive optics has been calculated. Ground-layer adaptive optics will reduce the effects of atmospheric seeing, increasing the resolution and sensitivity of astronomical observations over wide fields. Tomographic adaptive optics will provide diffraction-limited imaging along a single line of sight, increasing the amount of sky coverage available to adaptive optics correction.A new facility class wavefront sensor has been deployed at the MMT which will support closed-loop adaptive optics correction using a constellation of five Rayleigh laser guide stars and the deformable F/15 secondary mirror. The adaptive optics control loop was closed for the first time around the focus signal from all five laser signals in July of 2007, demonstrating that the system is working properly. It is anticipated that the full high-order ground-layer adaptive optics loop, controlled by the laser signals in conjunction with a tip/tilt natural guide star, will be closed in September 2007, with the imaging performance delivered by the system optimized and evaluated.The work here is intended to be both its own productive scientific endeavor for the MMT, but also as a proof of concept for the advanced adaptive optics systems designed to support observing at the Large Binocular Telescope and future extremely large telescopes such as the Giant Magellan Telescope.
39

Optimizing the Optical Calibration Performance of a Multi-Object Adaptive Optics Instrument

Pham, Laurie Nhu An 17 December 2013 (has links)
Multi-Object Adaptive Optics (MOAO) is an adaptive optics technique being developed for Extremely Large Telescopes that will allow simultaneous observation of approximately 20 targets in a several arc-minute field of regard. Raven is an MOAO pathfinder developed by the Adaptive Optics Laboratory of the University of Victoria, in collaboration with the National Research Council of Canada and the Subaru Telescope. It will be the first MOAO instrument on a 8-m class telescope, will demonstrate that MOAO technical challenges such as open-loop control and calibration are achievable on-sky and will deliver science results using three natural guide stars and two science arms on ∼ 3.5′ field-of-regard. The open-loop approach makes the need for calibration even more crucial. An important part of the calibration process resides in the misregistration of the wavefront sensors (WFSs) with the deformable mirrors (DMs) because the sensing elements are located before the correcting ones. This problem is solved using a cal- ibration DM seen by all WFSs in the system that permits the open-loop WFS to be registered to the science DMs. The method developed in this thesis registers the position of the DM actuators to the WFSs and gives misregistration values. These results are then used to better align the instrument, to have a better knowledge of the positions of the different optical components and generate new ways to perform the AO correction. Using the registration parameters results, synthetic interaction matrices are created in order to improve the AO correction. Calibration tests are also presented in this thesis. They show complementary tests to the expected requirements to expand the knowledge of the calibration unit behaviour. / Graduate / 0548 / 0752 / lpham@uvic.ca
40

Solutions to linear problems in aberrated optical systems

Shain, William Jacob 09 October 2018 (has links)
Linear problems are possibly the kindest problems in physics and mathematics. Given sufficient information, the linear equations describing such problems are intrinsically solvable. The solution can be written as a vector having undergone a linear transformation in a vector space; extracting the solution is simply a matter of inverting the transformation. In an ideal optical system, the problem of extracting the object under investigation would be well defined, and the solution trivial to implement. However, real optical systems are all aberrated in some way, and these aberrations obfuscate the information, scrambling it and rendering it inextricable. The process of detangling the object from the aberrated system is no longer a trivial problem or even a uniquely solvable one, and represents one of the great challenges in optics today. This thesis provides a review of the theory behind optical microscopy in the presence of absent information, an architecture for the modern physical and computational methods used to solve the linear inversion problem, and three distinct application spaces of relevance. I hope you find it useful.

Page generated in 0.0442 seconds