• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hierarchical Data Structures for Optimization of Additive Manufacturing Processes

Panhalkar, Neeraj 10 September 2015 (has links)
No description available.
2

Local Adaptive Slicing for Layered Manufacturing

Tyberg, Justin 02 March 1998 (has links)
Existing layered manufacturing systems fabricate parts using a constant build layer thickness. Hence, operators must compromise between rapid production with large surface inaccuracies, and slow production with high precision, by choosing between thick and thin build layers, respectively. Adaptive layered manufacturing methods alleviate this decision by automatically adjusting the build layer thickness to accommodate surface geometry, thereby potentially enabling part fabrication in significantly less time. Unfortunately, conventional adaptive layered manufacturing techniques are often unable to realize this potential when transitioning from the laboratory to an industrial setting. The problem is that they apply the variable build layer thickness uniformly across each horizontal build plane, applying the same build layer thickness to all parts and part features across that plane even though they have different build layer thickness needs. When this happens, the advantage of using adaptive build layer thicknesses is lost. This thesis demonstrates how to minimize fabrication times when implementing adaptive layered manufacturing. Specifically, it presents a new method in which each part or individual part feature is assigned a distinct, independent build layer thickness according to its particular surface geometry. Additionally, this thesis presents a calibration procedure for the Fused Deposition Modeler (FDM) rapid prototyping system that enables accurate, adaptively sliced parts to be physically realizable. Experimental software has been developed and sample parts have been fabricated to demonstrate both aspects of this work. / Master of Science
3

Adaptive Slicing in Additive Manufacturing Process using a Modified Boundary Octree Data Structure

Siraskar, Nandkumar S. January 2012 (has links)
No description available.

Page generated in 0.0837 seconds