• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study on image change detection methods for multiple images of the same scene acquired by a mobile camera.

Tanjung, Guntur January 2010 (has links)
Detecting regions of change while reducing unimportant changes in multiple outdoor images of the same scene containing fence wires (i.e., a chain-link mesh fence) acquired by a mobile camera from slightly different viewing positions, angles and at different times is a very difficult problem. Regions of change include appearing of new objects and/or disappearing of old objects behind fence wires, breaches in the integrity of fence wires and attached objects in front of fence wires. Unimportant changes are mainly caused by camera movement, considerable background clutter, illumination variation, tiny sizes of fence wires and non-uniform illumination that occurs across fence wires. There are several issues that arise from these kinds of multiple outdoor images. The issues are: (1) parallax (the apparent displacement of an object as seen from two different positions that are not on a line with the object) among objects in the scene, (2) changing in size of same objects as a result of camera movement in forward or backward direction, (3) background clutter of outdoor scenes, (4) thinness of fence wires and (5) significant illumination variation that occurs in outdoor scenes and across fence wires. In this dissertation, an automated change detection method is proposed for these kinds of multiple outdoor images. The change detection method is composed of two distinct modules, which are a module for detecting object presence and/or absence behind fence wires and another module for detecting breaches in the integrity of fence wires and/or attached objects in front of fence wires. The first module consist of five main steps: (1) automated image registration, (2) confidence map image production by the Zitnick and Kanade algorithm, (3) occlusion map image generation, (4) significant or unimportant changes decision by the first hybrid decision-making system and (5) false positives reduction by the template subtraction approach. The second module integrates: (1) the Sobel edge detector combined with an adaptive thresholding technique in extracting edges of fence wires, (2) an area-based measuring in separating small and big objects based on their average areas determined once in the calibration process and (3) the second hybrid decision-making system in classifying objects as significant or unimportant changes. Experimental results demonstrate that the change detection method can identify and indicate approximate locations and possible percentages of significant changes whilst reducing unimportant changes in these kinds of multiple outdoor images. The study has utilized occluded regions in a confidence map image produced by the Zitnick and Kanade algorithm as potential significant changes in the image change detection research. Moreover, the study proves that the use of the Sobel edge detector combined with an adaptive thresholding technique is applicable in extracting edges of outdoor fence wires. In the future, the method could be integrated into patrol robots in order to provide assistance to human guards in protecting outdoor perimeter security. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1522689 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2010
2

Rozpoznávání žil prstů lidské ruky / Recognition of Finger Veins of a Human Hand

Szalayová, Lucia January 2010 (has links)
This diploma thesis deals with different ways of grayscale image processing of veins in a finger of human hand. The process consists of vein structure extraction, and then this structure is compared with collection of provided snapshots. First of all we introduced problem of biometric systems and image processing. There are presented also some commercial solutions from the same field. Within the detailed description of image processing we suggested different modifications in adaptive thresholding algorithm, feature extraction, which continues into comparison of vein structures. Thesis is closed by testing and final review.
3

Využití přibližného počítání v oblasti zpracování obrazu / Application of Approximate Computing in Image Processing

Hruda, Petr January 2020 (has links)
This master thesis focuses on approximate computing applied to image processing. Specifically, the approximation is applied to adaptive thresholding. Two approaches were used, the design of a new system using approximated components and the approximation of an existing algorithm. The resulting effect on thresholding quality was investigated. Experimental evaluation of the first approach shows quality improvements of thresholding with usage of aproximated components. Also, area of found aproximated solutions is smaller. Evaluation of the second approach shows worse quality of thresholding with usage of aproximated components. The second approach is then declared inappropriate.
4

Detekce QRS komplexu s využitím vlnkové transformace / QRS Complex Detection Using Wavelet Transform

Loviška, David January 2010 (has links)
The aim of diploma thesis named “QRS detection using wavelet transform” is to simplify and accelerate the work of doctors. This can be achieved by using application for QRS detection, which can use one of four proposed algorithms. Application shows basic informations about inserted electrocardiogram. Part of this program is a graphical window with displayed record and with coloured marks on detected QRS complexes. By another algorythm are marks color-coded due to accurancy percentil of every detected complex. This program is designed for a several hours record from Holter ECG monitoring.
5

Rentgenová počítačová tomografie embrya myši / X-ray computed tomography of mouse embryo

Šejnohová, Marie January 2015 (has links)
The aim of this semestral thesis is to compare the possibilities of available micro-CT systems. Theoretic part of this thesis there deals with possibilities of staining soft tissues and embryos because of enhancement the contrast of micro-CT images. Here follows a description of sources X-ray and detectors of available micro-CT systems. In practice there was realized the staining of embryo in cooperation with Department of histology and embryology in Brno. Then followed a measuring on FSI in Brno, ČVUT in Prague and synchrotron Elettra in Italy. In semestral thesis are described of the thesis there are compared the micro-CT systems and results of measuring embryos by means of presented systems and results are compared.The best results were obtained on micro-CT in Brno, where X-ray tube and flat panel detector were used. This images were used for a segmentation of cartilage olfactory system by means of 3D region growing. From results they were created 3D models for comparison with a manually segmented model. A less accurate results were obtain with the semi-automatic segmentation but this method isn’t too time-consuming.
6

Text Localization for Unmanned Ground Vehicles

Kirchhoff, Allan Richard 16 October 2014 (has links)
Unmanned ground vehicles (UGVs) are increasingly being used for civilian and military applications. Passive sensing, such as visible cameras, are being used for navigation and object detection. An additional object of interest in many environments is text. Text information can supplement the autonomy of unmanned ground vehicles. Text most often appears in the environment in the form of road signs and storefront signs. Road hazard information, unmapped route detours and traffic information are available to human drivers through road signs. Premade road maps lack these traffic details, but with text localization the vehicle could fill the information gaps. Leading text localization algorithms achieve ~60% accuracy; however, practical applications are cited to require at least 80% accuracy [49]. The goal of this thesis is to test existing text localization algorithms against challenging scenes, identify the best candidate and optimize it for scenes a UGV would encounter. Promising text localization methods were tested against a custom dataset created to best represent scenes a UGV would encounter. The dataset includes road signs and storefront signs against complex background. The methods tested were adaptive thresholding, the stroke filter and the stroke width transform. A temporal tracking proof of concept was also tested. It tracked text through a series of frames in order to reduce false positives. Best results were obtained using the stroke width transform with temporal tracking which achieved an accuracy of 79%. That level of performance approaches requirements for use in practical applications. Without temporal tracking the stroke width transform yielded an accuracy of 46%. The runtime was 8.9 seconds per image, which is 44.5 times slower than necessary for real-time object tracking. Converting the MATLAB code to C++ and running the text localization on a GPU could provide the necessary speedup. / Master of Science
7

Fast Registration of Tabular Document Images Using the Fourier-Mellin Transform

Hutchison, Luke Alexander Daysh 24 March 2004 (has links)
Image registration, the process of finding the transformation that best maps one image to another, is an important tool in document image processing. Having properly-aligned microfilm images can help in manual and automated content extraction, zoning, and batch compression of images. An image registration algorithm is presented that quickly identifies the global affine transformation (rotation, scale, translation and/or shear) that maps one tabular document image to another, using the Fourier-Mellin Transform. Each component of the affine transform is recovered independantly from the others, dramatically reducing the parameter space of the problem, and improving upon standard Fourier-Mellin Image Registration (FMIR), which only directly separates translation from the other components. FMIR is also extended to handle shear, as well as different scale factors for each document axis. This registration method deals with all transform components in a uniform way, by working in the frequency domain. Registration is limited to foreground pixels (the document form and printed text) through the introduction of a novel, locally adaptive foreground-background segmentation algorithm, based on the median filter. The background removal algorithm is also demonstrated as a useful tool to remove ambient signal noise during correlation. Common problems with FMIR are eliminated by background removal, meaning that apodization (tapering down to zero at the edge of the image) is not needed for accurate recovery of the rotation parameter, allowing the entire image to be used for registration. An effective new optimization to the median filter is presented. Rotation and scale parameter detection is less susceptible to problems arising from the non-commutativity of rotation and "tiling" (periodicity) than for standard FMIR, because only the regions of the frequency domain directly corresponding to tabular features are used in registration. An original method is also presented for automatically obtaining blank document templates from a set of registered document images, by computing the "pointwise median" of a set of registered documents. Finally, registration is demonstrated as an effective tool for predictive image compression. The presented registration algorithm is reliable and robust, and handles a wider range of transformation types than most document image registration systems (which typically only perform deskewing).
8

Differences in tumor volume for treated glioblastoma patients examined with 18F-fluorothymidine PET and contrast-enhanced MRI / Differentiering av glioblastompatienter med avseende på tumörvolym från undersökningar med 18F-fluorothymidine PET och kontrastförstärkt MR

Hedman, Karolina January 2020 (has links)
Background: Glioblastoma (GBM) is the most common and malignant primary brain tumor. It is a rapidly progressing tumor that infiltrates the adjacent healthy brain tissue and is difficult to treat. Despite modern treatment including surgical resection followed by radiochemotherapy and adjuvant chemotherapy, the outcome remains poor. The median overall survival is 10-12 months. Neuroimaging is the most important diagnostic tool in the assessment of GBMs and the current imaging standard is contrast-enhanced magnetic resonance imaging (MRI). Positron emission tomography (PET) has been recommended as a complementary imaging modality. PET provides additional information to MRI, in biological behavior and aggressiveness of the tumor. This study aims to investigate if the combination of PET and MRI can improve the diagnostic assessment of these tumors. Patients and methods: In this study, 22 patients fulfilled the inclusion criteria, diagnosed with GBM, and participated in all four 18F-fluorothymidine (FLT)-PET/MR examinations. FLT-PET/MR examinations were performed preoperative (baseline), before the start of the oncological therapy, at two and six weeks into therapy. Optimization of an adaptive thresholding algorithm, a batch processing pipeline, and image feature extraction algorithms were developed and implemented in MATLAB and the analyzing tool imlook4d. Results: There was a significant difference in radiochemotherapy treatment response between long-term and short-term survivors’ tumor volume in MRI (p<0.05), and marginally significant (p<0.10) for maximum standard uptake value (SUVmax), PET tumor volume, and total lesion activity (TLA). Preoperative short-term survivors had on average larger tumor volume, higher SUV, and total lesion activity (TLA). The overall trend seen was that long-term survivors had a better treatment response in both MRI and PET than short-term survivors.  During radiochemotherapy, long-term survivors displayed shrinking MR tumor volume after two weeks, and almost no remaining tumor volume was left after six weeks; the short-term survivors display marginal tumor volume reduction during radiochemotherapy. In PET, long-term survivors mean tumor volumes start to decrease two weeks into radiochemotherapy. Short-term survivors do not show any PET volume reduction two and six weeks into radiochemotherapy. For patients with more or less than 200 days progression-free survival, PET volume and TLA were significantly different, and MR volume only marginally significant, suggesting that PET possibly could have added value. Conclusion: The combination of PET and MRI can be used to predict radiochemotherapy response between two and six weeks, predicting overall survival and progression-free survival using MR and PET volume, SUVmax, and TLA. This study is limited by small sample size and further research with greater number of participants is recommended.

Page generated in 0.3144 seconds