Spelling suggestions: "subject:"adaptor 1protein"" "subject:"adaptor 2protein""
11 |
Structural and functional elucidation of the primary transducer module of the B cell antigen receptorPirkuliyeva, Sona 16 February 2015 (has links)
No description available.
|
12 |
Régulation de la signalisation oncogénique de Src par l'adaptateur SLAP dans les cellules de cancer colorectal / Regulation of Src oncogenic signaling by the adaptor protein SLAP in colorectal cancer cellsNaudin, Cécile 14 December 2012 (has links)
La tyrosine kinase cytoplasmique Src est un régulateur clé de la signalisation induite par les facteurs de croissance et les intégrines. Src présente des propriétés oncogéniques lorsqu'elle est dérégulée, une situation fréquemment retrouvée dans les cancers colorectaux (CCR). Sous sa forme activée, Src participe à la croissance tumorale et à la formation de métastases. Cependant, les mécanismes de dérégulation impliqués sont mal connus. En effet, SRC est rarement muté dans ces cancers. Mon travail de thèse a mis en évidence un nouveau mécanisme de dérégulation de Src via l'inactivation de SLAP. SLAP est une protéine de signalisation de type adaptateur qui régule négativement la signalisation lymphocytaire. De part son association avec l'E3-ligase Cbl, il induit la dégradation de substrats importants de la tyrosine kinase Lck nécessaires à l'activation lymphocytaire. Je montre que SLAP est également exprimé dans le tissu épithélial colique et que son expression est fréquemment perdue au cours de la progression tumorale colorectale. SLAP inhibe la tumorigénicité et le potentiel métastasant des cellules de CCR. Sur le plan moléculaire, SLAP définit une boucle de rétrocontrôle d'une voie oncogénique Src/EphA2/Akt initiée par Src via la dégradation protéasome-dépendante du récepteur EphA2 impliquant l'ubiquitine E4-ligase UBE4A. Ces résultats révèlent un nouveau mécanisme d'induction oncogénique de Src, une fonction insoupçonnée de suppresseur de tumeurs de SLAP et montrent l'importance d'une E4-ligase et des protéines adaptatrices dans la régulation négative de la signalisation initiée par les tyrosine kinases dans la progression tumorale. / The cytoplasmic tyrosine kinase Src mediates intracellular signaling induced by growth factors and integrins. When deregulated, Src acquires oncogenic properties. Src deregulation largely occurs in the absence of mutation of the corresponding gene but the underlying molecular mechanisms involved in this process are still unclear. Here I uncovered a novel mechanism of Src oncogenic induction in colorectal cancer (CRC) via SLAP silencing. SLAP is an adaptor protein and signaling molecule that controls lymphocytes activation. By association with E3-ligase Cbl, SLAP induces proteasomal degradation of important components of T cell receptor signaling, which impedes lymphocytes activation. I show that SLAP is also expressed in the epithelial tissue of the colon, but its expression is frequently lost during tumorigenesis. I also show that SLAP controls tumorigenicity and invasiveness of CRC cells. At the molecular level, SLAP specifies a feedback loop of a Src/EphA2/Akt oncogenic signaling that is initiated by Src itself. Precisely, phosphorylation of EphA2 on Tyr594 by Src creates a binding site for SLAP-SH2 to elicit receptor degradation. This novel SLAP function is independent of Cbl but requires its interaction with the E4-ligase UBE4A. SLAP down-regulation observed in cancer cells dramatically increases EphA2 levels and amplifies a Src/EphA2/Akt signaling required for cell tumorigenicity. Thus, SLAP inactivation defines a novel mechanism of Src oncogenic induction in human cancer.
|
13 |
Úloha membránových mikrodomén a transmembránových adaptorových proteinů PRR7 a SCIMP v regulaci imunoreceptorové signalizace / The role of membrane microdomains and transmembrane adaptor proteins PRR7 and SCIMP in the regulation of immunoreceptor signalingHrdinka, Matouš January 2012 (has links)
Dissertation summary The role of membrane microdomains and transmembrane adaptor proteins PRR7 and SCIMP in the regulation of immunoreceptor signaling Matouš Hrdinka How do the plasma membrane microdomains and transmembrane adaptor proteins (TRAPs) influence the outcome of immunoreceptor signaling? These have been the important questions of molecular immunology. In spite of the years of intensive research, these problems remain incompletely understood. The plasma membrane is a highly dynamic heterogeneous bilayer spontaneously organized into microdomains of various size, composition, and lifetime. The lipid rafts are one example of such microdomains and have been implicated in many biological processes, including immunoreceptor signaling. Because rafts are enriched in many signaling proteins, they are believed to function as platforms for signal initiation and propagation. The TRAPs are important organizers and regulators of immunoreceptor signaling. For example, LAT is indispensable in T cell receptor (TCR) signaling and T cell development, PAG for the regulation of Src family tyrosine kinases (SFKs), and NTAL is a multifunctional negative and positive regulator. The presence of these TRAPs in lipid rafts seems to be crucial for their functions, however, is still a matter of debate. Moreover, other so far...
|
14 |
An investigation of the function of adaptor protein complex 4 (AP-4)Davies, Alexandra Katherine January 2019 (has links)
Vesicle trafficking provides the solution to the 'sorting problem' - how the eukaryotic cell maintains the distinct identities, and thus functional properties, of its membrane-bound organelles. During vesicle trafficking, proteins are selectively sorted into membrane bound transport intermediates by vesicle adaptors, which include those of the highly conserved adaptor protein (AP) complex family. Each AP complex has a distinct subcellular localisation and functions in the sorting of a specific subset of transmembrane cargo proteins. Adaptor protein complex 4 (AP-4) is one of the more recently identified AP complexes, whose function has largely remained elusive. In humans, AP-4 deficiency causes a severe neurological disorder, suggesting an important role in neuronal development and homeostasis. However, the pathomechanisms that underly the neuronal pathology in AP-4 deficiency are currently unknown. AP-4 is proposed to function in protein sorting at the trans-Golgi network (TGN), so AP-4 deficiency can be thought of as a disease of missorting. The aim of this study was to apply unbiased global proteomic approaches to define the composition of AP-4 vesicles and to identify physiological cargo proteins of the AP-4 pathway. Using 'Dynamic Organellar Maps' and comparative analysis of vesicle-enriched fractions from wild-type and AP-4-depleted cells, three ubiquitously expressed transmembrane cargo proteins, ATG9A, SERINC1 and SERINC3, were found to be mislocalised in AP-4-deficient cells. Two novel cytosolic AP-4 accessory proteins, RUSC1 and RUSC2, were also identified. Further proteomic analyses confirmed the interactions between these proteins. AP-4 deficiency was found to cause missorting of ATG9A in diverse cell types, including patient derived cells, as well as dysregulation of autophagy. RUSC2 facilitates the transport of AP-4-derived, ATG9A and SERINC-positive vesicles from the TGN to the cell periphery. These vesicles cluster in close association with autophagosomes, suggesting they are the 'ATG9 reservoir' required for autophagosome biogenesis. This study uncovers ATG9A trafficking as a ubiquitous function of the AP-4 pathway. Furthermore, it provides a potential molecular pathomechanism of AP-4 deficiency, through dysregulated spatial control of autophagy.
|
15 |
Characterization of the Adaptor Protein XB130, a Tyrosine Kinase Substrate and a Novel Component of the LamellipodiaLodyga, Monika 10 January 2012 (has links)
Adaptor proteins play a vital role in the propagation of cellular signals. Although they lack endogenous catalytic activity, they contain a variety of protein binding modules, which enable them to promote specific and efficient interactions with their binding partners. They form integrative platforms for a variety of molecules (e.g. lipids, tyrosine kinases, cytoskeletal and signaling proteins), and thereby link and coordinate key functions such as cell growth, motility and shape determination. Our laboratory has recently cloned a novel, 130 kDa adaptor protein, named XB130, as a structural homolog of actin-filament-associated-protein (AFAP-110), a stress fiber-binding Src substrate. However, the molecular interactions and functions of this novel adaptor remained to be elucidated. To characterize the function of XB130 we asked two general questions: (1) Is XB130 involved in the signal transduction pathways of tyrosine kinases? And (2) Is XB130 capable of regulating the cytoskeleton and/or is it regulated by the cytoskeleton? To address these questions first we investigated the tissue distribution of XB130 and discovered that it is abundantly expressed in thyroid. Therefore we asked whether it is a target of the thyroid-specific tyrosine kinase, RET/PTC, a genetically rearranged, constitutively active enzyme that plays a pathogenic role in papillary thyroid cancer. We found that XB130 is a RET/PTC substrate that couples RET/PTC signaling to phosphatidylinositol 3-kinase (PI3K) activation through its phosphorylation dependent interaction with the regulatory subunit p85 of PI3K. XB130 plays an important role in PI3K signaling, as downregulation of XB130 in TPC1 papillary thyroid cancer cells, harboring the RET/PTC1 kinase, strongly reduced Akt activity and concomitantly inhibited cell cycle progression and survival in suspension. In the second part we demonstrate that XB130 is a novel Rac- and cytoskeleton-regulated protein that exhibits high affinity to lamellipodial (branched) F-actin and impacts motility and invasiveness of tumor cells. In conclusion, my work characterized a novel adaptor protein and assigned two well-defined pathophysiological functions to it in the context of thyroid cancer cells.
|
16 |
XB130: in silico and invivo Studies of a Novel Signal Adaptor ProteinRubacha, Matthew 15 February 2010 (has links)
XB130 is a relatively unstudied novel signal adaptor protein. In the first phase of this study, an in silico search for proteins related to XB130 was conducted. Two other proteins (AFAP and AFAP1L1) were found to have a significant similarity to XB130 and were compared in detail. After an analysis of these three proteins, it was proposed that they are members of a novel protein family, termed the “AFAP family of signal adaptor proteins”.
XB130 has previously been found to regulate cell cycle progression, death, and migration in lung epithelial cells. It was therefore hypothesized that XB130 is protective in acute lung injury (ALI) and important for facilitating repair after injury. XB130 was found to be differentially regulated in ALI depending on the initial insult. Engineering XB130 transgenic mice to further characterize the role of XB130 in lung injury/regeneration revealed that this protein could be essential for early embryo development.
|
17 |
XB130: in silico and invivo Studies of a Novel Signal Adaptor ProteinRubacha, Matthew 15 February 2010 (has links)
XB130 is a relatively unstudied novel signal adaptor protein. In the first phase of this study, an in silico search for proteins related to XB130 was conducted. Two other proteins (AFAP and AFAP1L1) were found to have a significant similarity to XB130 and were compared in detail. After an analysis of these three proteins, it was proposed that they are members of a novel protein family, termed the “AFAP family of signal adaptor proteins”.
XB130 has previously been found to regulate cell cycle progression, death, and migration in lung epithelial cells. It was therefore hypothesized that XB130 is protective in acute lung injury (ALI) and important for facilitating repair after injury. XB130 was found to be differentially regulated in ALI depending on the initial insult. Engineering XB130 transgenic mice to further characterize the role of XB130 in lung injury/regeneration revealed that this protein could be essential for early embryo development.
|
18 |
Characterization of the Adaptor Protein XB130, a Tyrosine Kinase Substrate and a Novel Component of the LamellipodiaLodyga, Monika 10 January 2012 (has links)
Adaptor proteins play a vital role in the propagation of cellular signals. Although they lack endogenous catalytic activity, they contain a variety of protein binding modules, which enable them to promote specific and efficient interactions with their binding partners. They form integrative platforms for a variety of molecules (e.g. lipids, tyrosine kinases, cytoskeletal and signaling proteins), and thereby link and coordinate key functions such as cell growth, motility and shape determination. Our laboratory has recently cloned a novel, 130 kDa adaptor protein, named XB130, as a structural homolog of actin-filament-associated-protein (AFAP-110), a stress fiber-binding Src substrate. However, the molecular interactions and functions of this novel adaptor remained to be elucidated. To characterize the function of XB130 we asked two general questions: (1) Is XB130 involved in the signal transduction pathways of tyrosine kinases? And (2) Is XB130 capable of regulating the cytoskeleton and/or is it regulated by the cytoskeleton? To address these questions first we investigated the tissue distribution of XB130 and discovered that it is abundantly expressed in thyroid. Therefore we asked whether it is a target of the thyroid-specific tyrosine kinase, RET/PTC, a genetically rearranged, constitutively active enzyme that plays a pathogenic role in papillary thyroid cancer. We found that XB130 is a RET/PTC substrate that couples RET/PTC signaling to phosphatidylinositol 3-kinase (PI3K) activation through its phosphorylation dependent interaction with the regulatory subunit p85 of PI3K. XB130 plays an important role in PI3K signaling, as downregulation of XB130 in TPC1 papillary thyroid cancer cells, harboring the RET/PTC1 kinase, strongly reduced Akt activity and concomitantly inhibited cell cycle progression and survival in suspension. In the second part we demonstrate that XB130 is a novel Rac- and cytoskeleton-regulated protein that exhibits high affinity to lamellipodial (branched) F-actin and impacts motility and invasiveness of tumor cells. In conclusion, my work characterized a novel adaptor protein and assigned two well-defined pathophysiological functions to it in the context of thyroid cancer cells.
|
19 |
B-cell-antigen receptor endocytosis uses a distinct signaling pathway, involving LAB, Vav, dynamin and Grb2Malhotra, Shikha. January 2009 (has links) (PDF)
Thesis (Ph. D.)--University of Oklahoma. / Bibliography: leaves 155-195.
|
20 |
Contributions of the individual b subunits to the function of the peripheral stalk of F1F0 ATP synthaseGrabar, Tammy Weng Bohannon, January 2004 (has links)
Thesis (Ph. D.)--University of Florida, 2004. / Typescript. Title from title page of source document. Document formatted into pages; contains 258 pages. Includes vita. Includes bibliographical references.
|
Page generated in 0.0489 seconds