• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 10
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 11
  • 10
  • 9
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Role of p21-activated Kinase (PAK)-Nck in the Formation of Filopodia and Large Protrusions

DeMuth, John Gary 27 May 2010 (has links)
No description available.
32

Regulace signalní dráhy ERK prostřednictvím scaffold proteinu RACK1 / The regulation of the ERK signalling pathway by scaffold protein RACK1

Bráborec, Vojtěch January 2012 (has links)
The ERK signalling cascade comprised of protein kinases Raf, MEK and ERK is an evolutionarily conserved member of MAPK family that is activated in response to wide range of extracellular stimuli. The ERK pathway controls fundamental cellular functions including cell proliferation, differentiation, apoptosis or cell motility. To control such a diverse cellular responses by a single pathway cells have evolved regulatory mechanisms that channel the extracellular signals towards the specific biological response. Crucial to this control are non- enzymatic proteins termed scaffolds that associate with and enhance functional interaction of the components of MAPK pathways and can regulate amplitude, timing, specificity and location of signals. Scaffold protein RACK1 associates with several components of cell migration machinery including integrins, FAK, Src and the ERK pathway core protein kinases. RACK1 regulates distinct steps of cell migration such as establishment of cell polarity and focal adhesion turnover, however, the molecular mechanism by which RACK1 regulates these processes remains largely unknown. The main aim of this study was to investigate the functional role of RACK1 in cell motility, in particular to identify new effector proteins utilized by the ERK pathway and RACK1 in the regulation of...
Read more
33

Combining artificial Membrane Systems and Cell Biology Studies: New Insights on Membrane Coats and post-Golgi Carrier Formation

Stange, Christoph 16 January 2013 (has links) (PDF)
In mammalian cells, homeostasis and fate during development relies on the proper transport of membrane-bound cargoes to their designated cellular locations. The hetero-tetrameric adaptor protein complexes (APs) are required for sorting and concentration of cargo at donor membranes, a crucial step during targeted transport. AP2, which functions at the plasma membrane during clathrin-mediated endocytosis, is well characterized. In contrast, AP1 a clathrin adaptor mediating the delivery of lysosomal hydrolases via mannose 6-phosphate receptors (MPRs) and AP3 an adaptor ensuring the proper targeting of lysosomal membrane protein are difficult to study by classic cell biology tools. To gain new insights on these APs, our lab has previously designed an in vitro system. Reconstituted liposomes were modified with small peptides mimicking the cytosolic domains of bona fide cargoes for AP1 and AP3 respectively and thereby enabling the selective recruitment of these APs and the identification of the interacting protein network. In the study at hand we utilize above-described liposomes to generate supported lipid bilayers and Giant Unilamellar Vesicles (GUVs), large-scale membrane systems suited for analysis by fluorescence microscopy. By using cytosol containing fluorescently-tagged subunits, we visualized clathrin coats on artificial membranes under near physiological conditions for the first time. Moreover, we demonstrated clathrin-independent recruitment of AP3 coats on respective GUVs. Presence of active ARF1 was sufficient for the selective assembly of AP1-dependent clathrin coats and AP3 coats on GUVs. By using dye-conjugated ARF1, we show that ARF1 colocalized with AP3 coats on GUVs and that increased association of ARF1 with GUVs coincided with AP1-dependent clathrin coats. Our previous study identified members of the septin family together with AP3 coats on liposomes. Here we show on GUVs, that active ARF1 stimulated the assembly of septin7 filaments, which may constrain the size and mobility of AP3 coats on the surface. Subsequent cell biology studies in HeLa cells linked septins to actin fibers on which they may control mobility of AP3-coated endosomes and thus their maturation. An actin nucleation complex, based on CYFIP1 was identified together with AP1 on liposomes before. Here we show on GUVs, that CYFIP1 is recruited on the surface surrounding clathrin coats. Upon supply of ATP, sustained actin polymerization generated a thick shell of actin on the GUV surface. The force generated by actin assembly lead to formation of long tubular protrusions, which projected from the GUV surface and were decorated with clathrin coats. Thereby the GUV model illustrated a possible mechanism for tubular carriers formation. The importance of CYFIP1-reliant actin polymerization for the generation of MPR-positive tubules at the trans-Golgi network (TGN) of HeLa cells was subsequently demonstrated in our lab. The notion that tubulation of artificial membranes could be triggered by actin polymerization allowed us to perform a comparative mass spectrometry screen. By comparing the abundance of proteins on liposomes under conditions promoting or inhibiting actin polymerization, candidates possibly involved in stabilization, elongation or fission of membrane tubules could be identified. Among the proteins enriched under conditions promoting tubulation, we identified type I phosphatidylinositol-4-phosphate 5-kinases. Their presence suggested an involvement of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in tubule formation. By cell biology studies in HeLa we show, that down regulation of these enzymes altered the dynamics of fluorescently-tagged MPRs, illustrating the importance of locally confined PI(4,5)P2 synthesis during formation of coated carriers at the TGN. Bin–Amphiphysin–Rvs (BAR) domains are known to sense membrane curvature and induce membrane tubulation. Among various BAR domain proteins, Arfaptin2 was enriched under conditions allowing tubulation of liposomes. By microscopy studies on HeLa cells we show, that Arfaptin2 as well as its close paralog Arfaptin1 were present on AP1-coated MPR tubules emerging from the TGN. We further show, that tubule fission occurred at regions were Arfaptin1 is concentrated and that simultaneous down regulation of both Arfaptins lead to increased number and length of MPR tubules. Since fission of coated transport intermediates at the TGN is poorly understood, our findings contribute a valuable component towards a model describing the entire biogenesis of coated post-Golgi carriers. In conclusion, combining artificial membrane systems and cell biology studies allowed us to propose new models for formation as wall as for fission of AP1-coated transport intermediates at the TGN. Further we gained new insights on AP3 coats and the possible involvement of septin filaments in AP3-dependent endosomal maturation.
Read more
34

Receptor Guanylyl Cyclase C Cross-talk With Tyrosine Kinases And The Adaptor Protein, Crk

Vivek, T N 06 1900 (has links)
Signal transduction is a crucial event that enables cells to sense and respond to cues from their immediate environment. Guanylyl cyclase C (GC-C) is a member of the family of receptor guanylyl cyclases. GC-C is a single transmembrane protein that responds to its ligands by the production of the second messenger cGMP. The guanylin family of peptides, (including the bacterially produced heat-stable enterotoxin ST) is the ligand for GC-C, elevates intracellular cGMP levels and activates downstream pathways. GC-C regulates the cystic fibrosis transmembrane conductance regulator (CFTR) by inducing phosphorylation by protein kinase G, resulting in chloride ion and fluid efflux. GC-C also regulates cell cycle progression through cGMP-gated Ca2+ channels. These functions are seen in the intestinal epithelium, the primary site for GC-C expression. GC-C as a molecule has been studied in detail, but its functioning in the context of other signaling pathways remains unknown. The aim of the present investigation was to understand the regulation of signal transduction by GC-C and its cross-talk with other signaling pathways operating in the cell. Molecular events that commonly connect components in a signaling pathway are protein phosphorylation and protein-protein interaction. These two aspects are explored in this thesis. The possibility of tyrosine phosphorylation of GC-C has been explored earlier in our laboratory. In vitro studies indicated that the residue Tyr820 was a site for phosphorylation by the Src family of non-receptor tyrosine kinases and those studies also suggested that phosphorylated Tyr820 could bind to the SH2 domain of Src. We generated a nonphosphorylatable mutant of GC-C, GC-CY820F, and a phosphomimetic mutant GC-CY820E to study the effect of phosphorylation of Tyr820, on the functioning of GC-C. A stable cell line of HEK293:GC-CY820F cells was generated and compared with HEK293:GC-CWT. Dose response to ST in the two cell lines showed that cGMP accumulation by GC-CY820F was greater than that of GC-CWT, although the EC50 remained unchanged. The phosphomimetic GC-CY820E mutant receptor was non-responsive to ST. Further in HEK293 cells, phosphorylation of GC-CWT by constitutively active v-Src resulted in decreased ST stimulation and this effect of v-Src was reduced with GC-CY820F. Inhibition of ST stimulation brought about by v-Src required catalytically active Src, as the kinase inactive v-SrcK295R did not inhibit ST stimulation. These results were corroborated by in vitro studies by using the recombinant catalytic domain of GC-C expressed in insect cells and by phosphorylation using a purified kinase, Hck. Observations suggested that phosphorylation of Tyr820 in the catalytic domain of GC-C compromises the guanylyl cyclase activity of GC-C. T84 and Caco-2 colon carcinoma cells endogenously express GC-C. The effect of tyrosine phosphorylation of GC-C was studied by using HgCl2, a known activator of Src kinases, and by the inhibition of protein tyrosine phosphatases using pervanadate, an irreversible inhibitor. Both these ways of achieving increased tyrosine phosphorylation resulted in decreased ST-stimulated cGMP production by GC-C, as suggested from v-Src transfection studies. This decrease was reversed by using a Src kinase specific inhibitor PP2, confirming the role of Src kinases in the inhibition of GC-C activity. Interestingly, in Caco-2 cells that differentiate in culture, the effect of pervanadate on the inhibition of ST-stimulated GC-C activation was dependent on the differentiation stage. Crypt-like cells showed higher inhibition with pervanadate. As they matured into villus-like cells, the effect of pervanadate on GC-C activation was gradually lost. This effect also correlated with a decrease in the expression of Lck, suggesting that in the context of the intestine there could be differential regulation of tyrosine phosphorylation of GC-C along the crypt-villus axis. Intestinal ligated loop assays in rats demonstrated that ST-induced fluid accumulation in the intestine was abrogated on pervanadate treatment. Reduction in this fluid accumulation by pervanadate was not observed with 8-Br-cGMP, a cell permeable analogue of cGMP. This indicated that tyrosine phosphorylation of proteins is important for ST-induced fluid accumulation, and perhaps pervanadate modulates this by phosphorylation of GC-C, thereby causing a reduction in fluid accumulation. Earlier in vitro studies on Src-SH2 binding from the laboratory had suggested the possibility of activation of Src family kinases by GC-C. The activation status of Src kinases was monitored by using phosphorylation-state specific antibody, pSFK416. ST stimulation in T84 cells increased Tyr416 phosphorylation of Src kinases in a time dependent manner, indicating that Src kinases are activated downstream of GC-C. This activation of Src kinases was also seen with the endogenous ligand of GC-C, uroguanylin. Interestingly, 8-Br-cGMP a cell permeable analogue of cGMP that is known to mimic other cellular effects of GC-C, namely Cl-secretion and cell cycle progression, did not activate Src kinases, suggesting that the mechanism of Src kinase activation by GC-C could be independent of cGMP. Binding affinities of Src, Lck, Fyn and Yes SH2 domains to Tyr820 phosphorylated GCC peptide were in the nM range, indicating a high affinity of interaction. In vitro GST-SH2 pull down experiments suggested that phosphorylation of Tyr820 in full length GC-C allows interaction of GC-C to the SH2 domain of Src. These studies suggest a dual cross-talk between Src kinases and GC-C; Src phosphorylation inhibits GC-C signaling and stimulation of GC-C by its ligands activates Src kinases. Interaction of proteins containing SH2 and SH3 domains are commonly found in signaling molecules. In accordance with the observation that there are three PXXP motifs in GCC, many SH3 domains could interact with GC-C. GC-C appears to show a preference to bind the SH3 domains of Fyn, Hck, Abl tyrosine kinases, Grb2 and Crk adaptor proteins, the α-subunit of P85 PI3 kinase, PLC-γ and cortactin to various extents. The SH3 domains of spectrin and Nck did not show any detectable interaction with GC-C. In SH3 pull-down assays, the N-terminal SH3 domain of Crk, CrkSH3 (N), bound GC-C maximally, suggesting that Crk is a good candidate for interaction with GC-C. By overlay analysis, the region of GC-C that binds CrkSH3 (N) was narrowed down to the catalytic domain of GC-C containing a ‘PGLP’ motif. Mutations were generated in GC-C at this site to generate GC-CP916Q and GC-CW918R. These mutations compromised the binding of full length receptor to CrkSH3 (N). In cells, CrkII and GC-C co-transfection inhibited the ST stimulation of GC-C. A CrkII mutant, that has compromised binding through its SH3 domain, did not inhibit the activity of GC-C. CrkII from T84 cells co-immunoprecipitated with GC-C and interestingly, the phosphorylated form of CrkII did not, indicating that GC-C - Crk interaction could be regulated by the phosphorylation of Crk. In summary, this study places GC-C, in the context of tyrosine kinase signaling pathway and interaction with the adaptor protein Crk. These studies suggest that GC-C signal transduction can be altered by cross-talk with other signaling events in the cell. Reversible phosphorylation of tyrosine residues inhibits the activity of GC-C, and this is mediated by Src family kinases. Src kinases themselves are activated on stimulation of GC-C by its ligands, possibly because of SH2 domain interaction with GC-C. Association of Crk by its SH3 domain regulates GC-C functioning primarily by inhibiting ST-stimulated cGMP production. This opens up the possibility of GC-C signaling through a multimeric complex involving other binding partners of Crk, and these cross-talks involving GC-C with the two proto-oncogenes, Src and Crk, might have far reaching consequences in the regulation of cellular functions.
Read more
35

Combining artificial Membrane Systems and Cell Biology Studies: New Insights on Membrane Coats and post-Golgi Carrier Formation

Stange, Christoph 13 December 2012 (has links)
In mammalian cells, homeostasis and fate during development relies on the proper transport of membrane-bound cargoes to their designated cellular locations. The hetero-tetrameric adaptor protein complexes (APs) are required for sorting and concentration of cargo at donor membranes, a crucial step during targeted transport. AP2, which functions at the plasma membrane during clathrin-mediated endocytosis, is well characterized. In contrast, AP1 a clathrin adaptor mediating the delivery of lysosomal hydrolases via mannose 6-phosphate receptors (MPRs) and AP3 an adaptor ensuring the proper targeting of lysosomal membrane protein are difficult to study by classic cell biology tools. To gain new insights on these APs, our lab has previously designed an in vitro system. Reconstituted liposomes were modified with small peptides mimicking the cytosolic domains of bona fide cargoes for AP1 and AP3 respectively and thereby enabling the selective recruitment of these APs and the identification of the interacting protein network. In the study at hand we utilize above-described liposomes to generate supported lipid bilayers and Giant Unilamellar Vesicles (GUVs), large-scale membrane systems suited for analysis by fluorescence microscopy. By using cytosol containing fluorescently-tagged subunits, we visualized clathrin coats on artificial membranes under near physiological conditions for the first time. Moreover, we demonstrated clathrin-independent recruitment of AP3 coats on respective GUVs. Presence of active ARF1 was sufficient for the selective assembly of AP1-dependent clathrin coats and AP3 coats on GUVs. By using dye-conjugated ARF1, we show that ARF1 colocalized with AP3 coats on GUVs and that increased association of ARF1 with GUVs coincided with AP1-dependent clathrin coats. Our previous study identified members of the septin family together with AP3 coats on liposomes. Here we show on GUVs, that active ARF1 stimulated the assembly of septin7 filaments, which may constrain the size and mobility of AP3 coats on the surface. Subsequent cell biology studies in HeLa cells linked septins to actin fibers on which they may control mobility of AP3-coated endosomes and thus their maturation. An actin nucleation complex, based on CYFIP1 was identified together with AP1 on liposomes before. Here we show on GUVs, that CYFIP1 is recruited on the surface surrounding clathrin coats. Upon supply of ATP, sustained actin polymerization generated a thick shell of actin on the GUV surface. The force generated by actin assembly lead to formation of long tubular protrusions, which projected from the GUV surface and were decorated with clathrin coats. Thereby the GUV model illustrated a possible mechanism for tubular carriers formation. The importance of CYFIP1-reliant actin polymerization for the generation of MPR-positive tubules at the trans-Golgi network (TGN) of HeLa cells was subsequently demonstrated in our lab. The notion that tubulation of artificial membranes could be triggered by actin polymerization allowed us to perform a comparative mass spectrometry screen. By comparing the abundance of proteins on liposomes under conditions promoting or inhibiting actin polymerization, candidates possibly involved in stabilization, elongation or fission of membrane tubules could be identified. Among the proteins enriched under conditions promoting tubulation, we identified type I phosphatidylinositol-4-phosphate 5-kinases. Their presence suggested an involvement of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in tubule formation. By cell biology studies in HeLa we show, that down regulation of these enzymes altered the dynamics of fluorescently-tagged MPRs, illustrating the importance of locally confined PI(4,5)P2 synthesis during formation of coated carriers at the TGN. Bin–Amphiphysin–Rvs (BAR) domains are known to sense membrane curvature and induce membrane tubulation. Among various BAR domain proteins, Arfaptin2 was enriched under conditions allowing tubulation of liposomes. By microscopy studies on HeLa cells we show, that Arfaptin2 as well as its close paralog Arfaptin1 were present on AP1-coated MPR tubules emerging from the TGN. We further show, that tubule fission occurred at regions were Arfaptin1 is concentrated and that simultaneous down regulation of both Arfaptins lead to increased number and length of MPR tubules. Since fission of coated transport intermediates at the TGN is poorly understood, our findings contribute a valuable component towards a model describing the entire biogenesis of coated post-Golgi carriers. In conclusion, combining artificial membrane systems and cell biology studies allowed us to propose new models for formation as wall as for fission of AP1-coated transport intermediates at the TGN. Further we gained new insights on AP3 coats and the possible involvement of septin filaments in AP3-dependent endosomal maturation.
Read more
36

The Role of Rip2 Protein in the Nod Mediated Innate Immune Response: A Dissertation

Yang, Yibin 16 April 2010 (has links)
The Rip2 kinase contains a caspase recruitment domain (CARD) and has been implicated in the activation of the transcriptional factor NF-кB downstream of Nod-like receptors. However, how Rip2 mediates innate immune responses is still largely unclear. We show that Rip2 and IKK-γ become stably polyubiquitinated upon treatment of cells with the Nod2 ligand, muramyl dipeptide. We demonstrate a requirement for the E2 conjugating enzyme Ubc13, the E3 ubiquitin ligase Traf6 and the ubiquitin activated kinase Tak1 in Nod2-mediated NF-кB activation. We also show that M. tuberculosisinfection stimulates Rip2 polyubiquitination. Collectively, this study revealed that the Nod2 pathway is ubiquitin regulated and that Rip2 employs a ubiquitin-dependent mechanism to achieve NF-кB activation. We also demonstrate that intraphagosomal M. tuberculosis stimulates the cytosolic Nod2 pathway. We show that upon Mtb infection, Nod2 recognition triggers the expression of type I interferons in a Tbk1- and Irf5-dependent manner. This response is only partially impaired by the loss of Irf3 and therefore, differs fundamentally from those stimulated by bacterial DNA, which depends entirely on this transcription factor. This difference appears to result from the unusual peptidoglycan produced by mycobacteria, which we show is a uniquely potent agonist of the Nod2/Rip2/Irf5 pathway. Thus, the Nod2 system is specialized to recognize bacteria that actively perturb host membranes and is remarkably sensitive to Mycobacteria, perhaps reflecting the strong evolutionary pressure exerted by these pathogens on the mammalian immune system.
Read more
37

Structural and functional investigation of the C-terminal intrinsically disordered fragment of ErbB2 / Exploration structurale et fonctionnelle de la partie C-terminale intrinsèquement désordonnée de ErbB2

Pinet, Louise 17 October 2019 (has links)
ErbB2/HER2 est un récepteur tyrosine kinase de la famille d'EGFR (ErbB1) surexprimé dans plus de 20% des cancers du sein et associé à une forme particulièrement agressive de la maladie. Les récepteurs ErbBs sont actifs seulement sous forme de dimères, permettant la phosphorylation de leur queue C-terminale par leur domaine tyrosine kinase. La phosphorylation entraine l'interaction avec des protéines adaptatrices et l'activation de voies de signalisation, Ras/MAPK et PI3K/Akt principalement. Ces voies contrôlent la prolifération, la motilité cellulaire et la résistance à l'apoptose. Contrairement à ErbB1/3/4, ErbB2 dimérise en l'absence de ligand. Comprendre les autres mécanismes de régulation de la phosphorylation de ses tyrosines et de ses interactions est donc particulièrement intéressant.ErbB2 a fait l'objet de nombreuses études structurales et fonctionnelles. Elles ont permis la mise au point de traitements ciblés efficaces mais sujets à l'apparition de résistance, dont l'anticorps Trastuzumab, ciblant sa partie extracellulaire. La queue C-terminale d'ErbB2 (CtErbB2) a été très souvent ignorée dans ces études. Cette partie étant intrinsèquement désordonnée, il a fallu attendre ces dernières années pour que les concepts et les outils permettant de l'étudier émergent.Dans cette thèse, j'ai d'abord effectué la caractérisation structurale et dynamique de CtErbB2. J'ai montré que bien qu'étant dépourvue de toute structure stable, cette région riche en prolines possède plusieurs structures secondaires transitoires et un contact longue-distance participant très probablement à la régulation de ses interactions intra- et inter-moléculaires. Dans une deuxième partie je me suis intéressée à la caractérisation de la protéine adaptatrice Grb2, partenaire essentiel de ErbB2 pour l'activation de la voie des MAP kinases. L'organisation en solution des domaines de cette protéine modulaire dans sa forme libre était jusque là inconnue. J'ai ensuite étudié l'interaction entre Grb2 et CtErbB2, et montré que CtErbB2 interagit non seulement avec le domaine SH2 de Grb2 (par l'intermédiaire d'une phosphotyrosine), mais aussi avec son domaine SH3 N-terminal (grâce à un motif polyproline). Enfin, j'ai mis en place plusieurs stratégies de phosphorylation des tyrosines de CtErbB2, dans le but d'étudier plus largement l'effet des phosphorylations sur l'ensemble de cette région. / ErbB2/HER2 is a receptor tyrosine kinase of the EGFR (ErbB1) family overexpressed in 20% of breast cancers and associated to a particularly aggressive form of the disease. ErbB receptors are only active upon dimerization that enables phosphorylation of their C-terminal tail by their tyrosine kinase domain. Phosphorylation then triggers interaction with adaptor proteins and activation of signaling pathways, mainly Ras/MAPK and Akt/PI3K. Those pathways control cell proliferation, motility and resistance to apoptosis. Contrary to ErbB1/3/4, ErbB2 can dimerize without any ligand. Understanding other mechanisms of regulation of its tyrosine phosphorylation and of its interactions is thus particularly interesting.ErbB2 structure and function have been extensively studied. This has led to the development of several FDA-approved targeted drugs, that are effective but to which resistance occurs, amongst which the Trastuzumab antibody that targets ErbB2 extracellular domain. The C-terminal tail of ErbB2 (CtErbB2) has been widely ignored in these studies. Since it is intrinsically disordered, the concepts and tools to study it have only emerged in the last few years.In the present work, I have performed the structural and dynamic study of CtErbB2. I showed that despite its lack of any stable structure, this proline-rich region exhibits several transient secondary structures and a long-range contact that might participate in the regulation of its intra- and inter-molecular interactions. Then, I characterized the adaptor protein Grb2, which is a partner of ErbB2 that is essential for the activation of the MAPK pathway. The solution organization of the domains of this modular protein in its apo-form was unknown so far. I also studied the interaction between Grb2 and CtErbB2, showing that in addition to the known SH2-phosphotyrosine interaction, a polyproline motif of CtErbB2 binds to the N-terminal SH3 domain of Grb2. Finally, I implemented several strategies to phosphorylate CtErbB2 tyrosines, to study more extensively the effect of phosphorylation on the whole tail.
Read more
38

L’adaptateur immunitaire SKAP1 régule la costimulation du CD28 et le métabolisme dans les lymphocytes T

Liu, Chen 08 1900 (has links)
Le système immunitaire est dynamique, et notre laboratoire a identifié SKAP1 comme une protéine adaptatrice immunitaire clé dans l'activation de l'adhésion de l'intégrine LFA-1 des lymphocytes T. Une expression réduite de SKAP1 améliore la mobilité des lymphocytes T et réduit leur temps de contact avec les cellules présentatrices d'antigènes. Nous avons émis l'hypothèse que cette mobilité accrue pourrait augmenter la résistance des souris Skap1-/- contre la croissance tumorale en favorisant la pénétration des lymphocytes T dans les tumeurs. Les modèles de mélanome murin ont montré une régression tumorale améliorée et une augmentation des cellules T CD8 intratumorales dans les souris SKAP1 knockout (KO). Ces cellules T intratumorales ont montré une expression accrue de Ki-67 et une production excessive d'IFNγ, avec moins d'épuisement terminal (TIM3+CD101+) et un phénotype transitoire CX3CR1+. Le profilage transcriptomique et de cytométrie en flux a révélé une surexpression de CD28, corrélée négativement à l'épuisement. De plus, les splénocytes KO activés ex vivo ont montré une activité glycolytique accrue et une activation renforcée de la voie CD28/Akt/mTOR. En résumé, la perte de SKAP1 confère aux lymphocytes T des avantages prolifératifs et effecteurs intratumoraux, avec une capacité de glycolyse améliorée pour leur survie en environnement anaérobie. Ces résultats identifient SKAP1 comme une cible prometteuse pour les thérapies adaptatives contre les tumeurs, telles que les CAR-T. / Immune system is a dynamic system. Our lab identified the adaptor protein SKAP1, which activates T-cell integrin LFA-1 adhesion. Reduced SKAP1 expression increases T-cell motility and decreases T cell-APC dwell times. We hypothesized that this increased motility might enhance tumour penetration in Skap1-/- mice by improving T-cell tumour penetration. In mouse melanoma models Yummer 1.7 and B16 F10, SKAP1 knockout (KO) mice showed greater tumour regression and increased intratumoural CD8 T cells. KO T cells exhibited higher Ki-67 expression, indicating higher cell division, and produced more IFNγ. Despite increased proliferation, CD8 TILs from KO mice showed less terminal exhaustion (TIM3+CD101+) and a transitory phenotype with elevated CX3CR1. Transcriptome and flow cytometry profiling revealed upregulated CD28, negatively correlated with exhaustion. Ex vivo activated KO splenocytes showed increased glycolysis but not oxidative phosphorylation, alongside enhanced CD28/Akt/mTOR pathway activation. Overall, SKAP1 loss provided T cells with multiple benefits: stronger proliferative and effector CD8+ T cells with less terminal exhaustion and higher glycolytic capacity for survival in anaerobic environments. These findings identified SKAP1 as a promising target for adaptive tumour therapies, such as CAR-T.
Read more
39

PC7 : une protéase sécrétoire énigmatique ayant une fonction de sheddase et un ciblage cellulaire unique

Durand, Loreleï 04 1900 (has links)
No description available.
40

Spliceosome SNRNP200 promotes viral RNA sensing and IRF3 activation of antiviral response

Tremblay, Nicolas 11 1900 (has links)
No description available.

Page generated in 0.1144 seconds